atlstroke said:
Chet, if I understand flux correctly it is a measure of photons present in a cross section at a given time. If it is a surface then of course the photons are coming form one side. My question pertains to a circle suspended parallel to the surface. In this case I am viewing flux as a total measure of photons coming from above and below.
So in this circle, in the atmosphere is the amount of IR fully represented by the non filtered radiation coming directly from the sun plus the IR reflected/reemitted from the ground. If these two sources do not account for the total amount of IR present, what amount is coming from excited molecules in the atmosphere emitting photons.
Do you know of any studies that looked at this to determine what portion is represented by the amount emitted by atmospheric molecules? Would also be interested in seeing if the wavelength coming from the emissions of the excited atmospheric gasses gives enough of a finger print to identify what type of molecule is responsible for the secondary emission.
thanks
Here are a couple of references to papers I co-authored that show how there types of calculations are carried out:
Owens, A.J., Hales, C.H., Filkin, D.L., Miller, C., Steed, J.M., and Jesson, J.P., A Coupled One-Dimensional Radiative-Convective, Chemistry-Transport Model of the Atmosphere, 1. Model Structure and Steady State Perturbation Calculations, J. Geophys. Res., 90, D1, 2283-2311, (1985)
Miller, C., Meakin, P., Franks, R.G.E., and Jesson, J.P., The Fluorocarbon-Ozone Theory – V. One Dimensional Modeling of the Atmosphere: The Base Case, Atmospheric Environment, 12, 2481-2500 (1978)
Much of the radiative data for these models came from NASA publications: Solar photon flux vs wavelength, absorption cross sections of molecules vs wavelength, scattering cross sections of air, etc.
Chet