Mathman23
- 248
- 0
Hello
I have this problem here:
Given the series
\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)}
show that this converges for every x \in \{ w \in \mathbb{C} \| \|w \| \leq 1 \}
Solution:
Since
\sum_{n=1} ^{\infty} \left| \frac{x^{n+1}}{n(n+1)} \right| = \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right|
Since \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right| convergence then according the definition then
\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)} is absolute convergent.
Thus
x \in \{ w \in \mathbb{C} \| \|w \| \leq 1 \}. Right?
Best Regards
Fred
I have this problem here:
Given the series
\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)}
show that this converges for every x \in \{ w \in \mathbb{C} \| \|w \| \leq 1 \}
Solution:
Since
\sum_{n=1} ^{\infty} \left| \frac{x^{n+1}}{n(n+1)} \right| = \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right|
Since \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right| convergence then according the definition then
\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)} is absolute convergent.
Thus
x \in \{ w \in \mathbb{C} \| \|w \| \leq 1 \}. Right?
Best Regards
Fred
Last edited: