Radius of Convergence and Absolute Convergence of a Series

  • Thread starter Thread starter Mathman23
  • Start date Start date
  • Tags Tags
    Absolute Series
Mathman23
Messages
248
Reaction score
0
Hello

I have this problem here:

Given the series

\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)}

show that this converges for every x \in \{ w \in \mathbb{C} \| \|w \| \leq 1 \}

Solution:

Since

\sum_{n=1} ^{\infty} \left| \frac{x^{n+1}}{n(n+1)} \right| = \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right|

Since \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right| convergence then according the definition then

\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)} is absolute convergent.

Thus

x \in \{ w \in \mathbb{C} \| \|w \| \leq 1 \}. Right?

Best Regards
Fred
 
Last edited:
Physics news on Phys.org
This:

\sum_{n=1} ^{\infty} \left| \frac{x^{n+1}}{n(n+1)} \right| = \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right|

shouldn't be an equality. You hopefully meant an inequality here which is valid for x on the unit disc. Otherwise it looks good.
 
Then it should have say ?

\sum_{n=1} ^{\infty} \left| \frac{x^{n+1}}{n(n+1)} \right| \leq \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right|

Regards Humminbird

p.s. Do I use uniform continuety to show that

g(x) = \sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)}

is continious on x \in \{ w \in \mathbb{C} \| \|w \| \leq 1\} ??


shmoe said:
This:

\sum_{n=1} ^{\infty} \left| \frac{x^{n+1}}{n(n+1)} \right| = \sum_{n=1} ^{\infty} \frac{1}{n(n+1)} \right|

shouldn't be an equality. You hopefully meant an inequality here which is valid for x on the unit disc. Otherwise it looks good.
 
Last edited:
No, if
\sum_{n=1} ^{\infty} \frac{x^{n+1}}{n(n+1)}
then all you can say is "if x= 1 this is
\sum_{n=1} ^{\infty} \frac{1}{n(n+1)}
which converges absolutely" (since all terms are positive anyway).

Of course, I'm not sure why you chose to make x= 1. Have you determined what the radius of convergence is? And if the radius of convergence is 1, what happens when x= -1?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top