Rainfall drop velocity from a given height (not terminal)

AI Thread Summary
The discussion focuses on calculating the sub-terminal speed of raindrops using fluid and Newtonian mechanics principles. The original poster is struggling with a complex integral derived from the forces acting on the raindrop, specifically the balance between gravitational and drag forces. Suggestions include simplifying the problem by expressing the forces as a function of velocity and considering the difference between the current velocity and terminal velocity for better approximation. The conversation emphasizes the importance of knowing empirical constants and the potential for numerical solutions to introduce significant errors. Ultimately, the poster expresses satisfaction after resolving their issue.
uluru
Messages
4
Reaction score
0
hi everybody,

I posted this in an engineering forum but I think it's more relevant here, because it's really just a question of fluid and Newtonian mechanics.

I'm working on a project where I'm trying to measure raindrop parameters, and one thing I'm looking at is the sub-terminal speed of drops released from a certain height. The equation that I'm using is from http://staff.science.uva.nl/~jboxel/Publications/PDFs/Gent_98.pdf

The gist of the equation that I was considering is:

F = g*ρw*∏*d^3/6 - 3*∏*d*μ*V*Ct*Cd

where Ct = 1+0.16*Re^(2/3)

and Re = ρVD/μ;

and Cd = 1+a(We+b)^c - ab^c

where a,b,c are empirically derived constants and We = ρ*V^2*d/σ

Basically, when I put everything together and try to calculate fall velocity, I get stuck with a disgusting integral, because I use

V(t)=∫a(t) = (1/m)*∫F(t)

Does anybody have suggestions for how to approach this? I just want to make a model in matlab.. it seems like I could do some kind of step approach, because I looked at the integral and it's really nasty, but I don't know what to do, because I have V(t) on both sides...

Or if anybody knows of a simpler model presented in a paper, I could use that too. I just want to compare my data with a preexisting model; it's not critical to my project, but I think it's important.
 
Physics news on Phys.org
As I see it you need to write it in the from of a differential equation and Matlab will solve it (numericaly or otherwise):
Sum( Force( V(t) ) ) = mV'(t)
i.e. the sum of all the forces acting on the drop (drag ect.) - you need to write the those forces as a function of the drops velocity, equals the mass of the drop times acceleration (derivative of velocity with time).

Cheers.Roman.
 
The most obvious numerical solutions might accumulate significant errors.
If you're interested in the way it approaches terminal velocity, you should try working with the dependent variable being the difference between V and Vt. You might then be able to make suitable approximations to obtain an analytic solution for the asymptotic behaviour.
But it would require knowing the values of the constants and figuring out what terms can be ignored.
 
Sweet, i think I figured it oUt. Thanks
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top