Rationale of the position operator?

PerpStudent
Messages
30
Reaction score
0
Why is the position operator of a particle on the x-axis defined by x multiplied by the wave function? Is there an intuitive basis for this or is it merely something that simply works in QM?
 
Physics news on Phys.org
Multiplication by x is not in general the position operator. "x multiplied by the wave function" would be the correct recipe if by wave function you specifically mean the particle's state ket projected onto the position basis, ψ(x)=<x|ψ>. But often people speak about other "wavefunctions" such as the particle's state representation in momentum space, ψ'(p)=<p|ψ>. In the momentum basis, the (one-dimensonal) position operator is \hat{x}=i\hbar\frac{\partial }{\partial p}

Multiplication by x is the position operator only in the position basis. Measuring the position of a particle causes the particle's state to collapse into an eigenstate of the position basis. This means it has a definite position. If you know a particle's position exactly, let's say it's at q along the x-axis, then the probability of finding the particle at q is 100% and the probability of finding it anywhere else is 0%. So if a particle has the definite position q, then its wavefunction in the position basis must look like a dirac delta function centered at q, which would be written δ(x-q).

Multiplying the dirac delta function by x,
xδ(x-q) = qδ(x-q)
since δ(x-q) is zero everywhere except at x=q. You should be able to see that in the position basis, the delta functions are the eigenfunctions of multiplication by x and their eigenvalues are equal to their position.
 
Last edited:
Thanks, that's very helpful.
 
Look at the 2 formulas for the expectation of the position operator:
<br /> \langle \hat{x} \rangle = \int_{-\infty}^{\infty}{x \, \psi^{\ast}(x) \, \psi(x) \, dx} = \int_{-\infty}^{\infty}{\psi^{\ast}(x) \, \hat{x} \, \psi(x) \, dx}<br />
This has to be true for all possible wave functions. Comparing the 2, we conclude that:
<br /> \hat{x} \, \psi(x) = x \, \psi(x)<br />
This is generally true for every operator in its own eigenbasis representation.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top