MHB Rationalising Surds: Get the Answers You Need - Daniel

  • Thread starter Thread starter danielw
  • Start date Start date
AI Thread Summary
To rationalize surds, the discussion focuses on simplifying the expression for √63, which is correctly simplified to 3√7. The method for finding x involves determining that x is 7, as it fits within the bounds of the perfect squares 7² and 8². For y, the discussion clarifies that it must be negative, leading to the conclusion that y is -8 after applying the appropriate inequalities. The distinction between integers and natural numbers is also emphasized, highlighting the need for careful consideration of the problem's requirements. This approach effectively addresses the initial question and provides clarity on the rationalization process.
danielw
Messages
5
Reaction score
0
Hi All

This is my question.

View attachment 5871

I don't know how to begin working on it.

I already tried simplifying the first part to: $$ \sqrt{63} = \sqrt{7 \cdot 3^3}=\sqrt{7}\sqrt{3^2}=3\sqrt{7}$$

But this doesn't get me closer to answering the first part of the question, and I think the same technique will apply to the second part. I would be grateful for some guidance!

Thanks.

Daniel
 

Attachments

  • Capture2.PNG
    Capture2.PNG
    4.4 KB · Views: 113
Mathematics news on Phys.org
To find $x$, consider:

$$x^2\le63<(x+1)^2$$

So, think of the perfect squares that will fit the bill here:

$$7^2\le63<8^2$$

Thus, $x=7$...can you now find $y$?
 
MarkFL said:
To find $x$, consider:

$$x^2\le63<(x+1)^2$$

So, think of the perfect squares that will fit the bill here:

$$7^2\le63<8^2$$

Thus, $x=7$...can you now find $y$?

So since $$y^2=-(51)$$, $$y$$ is between 7 ($$7^2=49$$) and 8 ($$8^2=64$$), $$y=7$$?
 
The question for finding $y$ has an error in it...we are looking for an integer rather than a natural number. Natural numbers are denoted by $\mathbb{N}$ whereas integers are denoted by $\mathbb{Z}$.

We observe that $y$ must be a negative number (do you see why?), and so we can write:

$$(y+1)^2\le51<y^2$$

Since all 3 values are negative, we change the direction of the inequality when squaring.

And if we write:

$$7^2\le51<8^2$$

We may then write:

$$y^2=8^2$$

And we take the negative root here, to obtain:

$$y=-8$$

Does this make sense?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top