Bling Fizikst said:
Ok , i made these cases . let ##(R_x,R_x')=(2,2),(1,2),(2,1),(1,1)##
For ##(2,2)## , we can conclude that the corresponding ##V_x>1## and ##V_x'>1##
Solving for ##V## gives : ##V>\frac{3}{2}## and ##V>3## .
Hence , ##V>3##
Now , if ## t<10## then , ##V=t\in(3,10)## and if ##10<t<20## then ##10<t<17##.
Similarly , i did the calculations for the other three cases (I got a contradiction for ##(1,2)##, so excluded that case) :
For ##t\in(0,\frac{3}{2}) : i=\frac{2t}{3}##
For ##t\in(\frac{3}{2},5] : i=\frac{2t}{5}##
For ##t\in(3,10) : i=\frac{t}{3}##
For ##t\in(10,17): i=\frac{20-t}{3}##
For ##t\in[15,18.5): i=\frac{20-t}{\frac{5}{2}}##
For ##t\in[18.5,20) : i=\frac{20-t}{\frac{3}{2}}##
Not sure what went wrong
( I don't see any instability. )
I agree only with your first interval and its current. The sixth interval also looks good.
It was helpful for me to treat the two resistors in parallel as a single individual resistor, ##R_2## , with its own set of characteristics. I think I'm using ##R_X'## as you did, so that in general, ##R_2=R_X'/2## and ##V_2=V_X'## .
For ##\displaystyle \ \ V_2 \le 1 \text{ volt , } R_2 = \frac 1 2 \text{ ohm , }## and for ##\displaystyle \ \ V_2 > 1 \text{ volt , } R_2 = 1 \text{ ohm . }##
There are only three resistance values possible for the given configuration of the three resistors. These three values for the equivalent resistance of the network, ##R_{Eq}## , are:
##1.5\ \Omega \ , ## for ##R_X=1\,,\ R_2=0.5\, ,\ ##
##2.5\ \Omega \ , ## for ##R_X=2\,,\ R_2=0.5\, ,\ ## and
##3\ \Omega \ , ## for ##R_X=2\,,\ R_2=1\, ,\ ##
Well, I see that
@DaveE has chimed in, so I'll halt this for now. I may continue it later - - - or not.
Continuing on:
What we have here is a voltage divider.
The two cases in which ##R_X=2R_2\,,,\ ## specifically when ##R_{Eq} =1.5\ \Omega \, ## and ##R_{Eq} =3\ \Omega \, , ## we have ##V_X=2V_2\,.\ ##
Furthermore, the source voltage, ##V_0\,,\ ## is related to ##V_X## and ##V_2## by ##V_0=1.5V_X=3V_2\,.\ ##
Some additional details for ##R_{Eq} =1.5\ \Omega \,:, ##
As long as ## V_X \le 1 \rm{ \ volt \,, \ then \ }## ## R_X = 1 \ \rm{\Omega}\ ## and we have ##R_{Eq} =1.5\ \rm{\Omega} \, ## This requires that ##V_0\le 1.5 \ \rm{volts} \,.## Also notice that if ## V_X \le 1 \,,\ ## then ## V_2 \le 0.5 \,,\ ## so that ##R_{2} =0.5\ \rm{\Omega} \, .##
Similarly, some details for ##R_{Eq} =3\ \Omega \,:, ##
As long as ## V_2 > 1 \rm{ \ volt \,, \ then \ }## ## R_2 = 1 \ \rm{\Omega}\ ## and we have ##R_{Eq} =3\ \rm{\Omega} \, ## This requires that ##V_0> 3 \ \rm{volts} \,.## Also notice that if ## V_2 > 1 \,,\ ## then ## V_X > 2 \,,\ ## so that ##R_{2} =0.5\ \rm{\Omega} \, .##
Now for the complexity and what may seem to be contradictory results.
The situation for ##R_{Eq} =2.5\ \Omega \,:, ## Recall that in this case we have ##R_X=2\ \Omega\,,\ R_2=0.5\ \Omega\, .\ ##
Here we have ##R_X=4R_2\,,,\ ## so that we have ##V_X=4V_2\,.\ ##
For the source voltage we have ##V_0=1.25V_X\,,\ ## and ## V_0=5V_2\,.\ ##
Some additional details for ##R_{Eq} =2.5\ \Omega \,:, ##
##\ R_2=0.5\ \Omega\, .\ ## only if ## V_2 \le 1\,, \ ## requiring that ##V_0\le 5 \ \rm{volts} \,.##
##\ R_X=2\ \Omega\,,\ ## only if ## V_X > 1\,, \ ## requiring that ##V_0\le 1.25 \ \rm{volts} \,.##
This circuit element does exhibit hysteresis.