Real part of this complex quantity

AI Thread Summary
The discussion centers on the challenge of extracting the real part of a complex quantity related to a dispersive wave packet. The user presents a formula for the wave packet and references a textbook equation for its enlargement in the y-direction. They express difficulty in applying the method for finding the real part of a square root of a complex number. Suggestions include breaking down the exponential into real and imaginary components and forming the probability density from the wave packet. The conversation emphasizes solving a system of equations to find the necessary real parts for further analysis.
giuliopascal
Messages
5
Reaction score
0
Hi everyone,

I have a dispersive wave packet of the form:
##\frac{1}{\sqrt{D^2 + 2i \frac{ct}{k_0}}} e^{-y^2/(D^2+2i\frac{ct}{k_0})}##
The textbook says that the enlargement of the package, on the y direction, is:
##L=\frac{1}{D}\sqrt{D^4+4\left(\frac{ct}{k_0}\right)^2} ##
However I have some problems extracting the real part; I write:
##\frac{1}{\sqrt{D^2 + 2i \frac{ct}{k_0}}} = \frac{\sqrt{D^2 - 2i \frac{ct}{k_0}}}{\sqrt{D^4+4\left(\frac{ct}{k_0}\right)^2}}##
And I use the fact that:
##\Re{\sqrt{a+bi}}=\sqrt{\frac{a \pm \sqrt{a^2 + b^2}}{2}} ##
But I can't find the correct expression.

Do you have any suggestion?

Thank you very much
 
Mathematics news on Phys.org
I don't know what you've tried. However the exponential has to be broken down into real and imaginary parts. Then combine the real parts to get one term of the real part of the product and combine the imaginary parts to get the other term.
 
Try letting u(y)= the wave packet
Form the probability density abs(u^2) = u u*
You should be able to read the dispersion characteristics from there
 
If I understand your problem is something like : find ##\delta \in \mathbb{Z}## such that ##\delta^2 = z##, ##z\in \mathbb{Z}##

Assume ##\delta = x + iy ## and ## z = X + i Y = \frac{D^2 \frac{ct}{k_0}}{D^4+4\left(\frac{ct}{k_0}\right)^2} + i \frac{ -2 \frac{ct}{k_0}}{D^4+4\left(\frac{ct}{k_0}\right)^2}##.

You must solve the system of equation:

## X = x^2 - y^2 ##
## Y = 2xy ##
## \sqrt{ X^2 + Y^2 } = x^2 + y^2##
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top