Real world testing bench - trying to check my calculations

AI Thread Summary
The discussion centers on a homemade 'repeating pendulum hammer' designed for product testing, with specific dimensions and weight provided. The creator estimates the instantaneous force exerted by the hammer upon impact to be between 360 to 420 pounds. A participant highlights the importance of calculating the deceleration of the hammer and suggests considering the target's elasticity for more accurate results. The inquiry seeks validation of the force range and clarification on the test's purpose. Overall, the conversation emphasizes the complexities involved in accurately measuring impact forces in such experimental setups.
leahcim
Messages
1
Reaction score
0
I know this seems like a homework question but the last time I was in a physics class was <ahem> 1982.

For product testing reasons, I have fabricated a (rough, very rough--no laughing at the fabrication/welding) 'repeating pendulum hammer'. Please see "test rig diagram.jpg"

Distance from A to B is 13.5"
Weight of (C) Hammer (pendulum) is 10 pounds

C is raised 90 degrees and then dropped to strike B (30/minute - fyi)

I am assuming away all frictions, incorrect/incomplete angles and time issues.

I believe/calculated the instantaneous force (in pounds/force) at B, exerted by the hammer (C) to be in the range of 360 to 420.

This Rube Goldberg was conceived on a bar napkin talking with a ME. Do the forces fall in that range?

TIA,
leahcim
 

Attachments

  • test rig diagram.jpg
    test rig diagram.jpg
    56.1 KB · Views: 528
Last edited:
Physics news on Phys.org
How did you get this force range?

The important thing here is the deceleration of the 'hammer'. This is in general tough to calculate...you might get close if you can find the elasticity of the target (assuming the 'hammer' is a hard metal).
 
What exactly are you trying to achieve with your test? I do this stuff for a living, so I am always interested.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Replies
5
Views
2K
Back
Top