Recoil Proton Momentum Spectrum in Neutron Decay

AI Thread Summary
The discussion focuses on deriving the proton momentum spectrum from the energy spectrum of recoil protons using Nachtmann's spectrum. The initial calculations involve the functions g1[T] and g2[T], along with the variable σ[T], to establish the energy spectrum. The user encounters difficulties in obtaining the correct momentum spectrum and realizes that a non-relativistic conversion requires a multiplication factor of p/mn. Ultimately, the user resolves the confusion regarding the transformation needed to accurately represent the proton momentum spectrum. The conversation highlights the complexities of transitioning from energy to momentum spectra in neutron decay analysis.
Waleed Khalid
Messages
2
Reaction score
0
I wish to draw the proton momentum spectrum by transforming the energy spectrum of recoil protons. I have calculated the energy spectrum using Nachtmann's spectrum: wp=g1[T]+a*g2[T]
Where:
g1[T]=(1 - x2/σ[T])2 * Sqrt[1 - σ[T]] * (4*(1 + x2/σ[T]) - (4/3*(σ[T] - x2)/σ[T])*(1 - σ[T]));
g2[T]=(1 - x2/σ[T])2 * Sqrt[1 - σ[T]] * (4*(1 + x2/σ[T] - 2*σ[T]) - 4/3*(σ[T] - x2)/σ[T]*(1 - σ[T]));
and σ[T]=1 - 2 * T * mn/(mn-mp)2
and a is the electron neutrino correlation.

To get the momentum spectrum, I am transforming the functions (non relativistically):
TofP[p]=p2/(2*mn)

wmom=wp[TofP[p]]

However this doesn't yield the correct spectrum for the momentum of the recoiled protons, as far as I have gotten it I have to multiply it with p and TofP[p] to get the shape of the correct spectrum (wmom=wp[TofP[p]]*p*TofP[p]). Which doesn't make sense to me, so if anyone can explain I would be highly thankful.
 
Physics news on Phys.org
Nevermind, I was being stupid, the answer was simple, since I was using a non relativistic conversion I had to multiply with a factor of p/mn

Waleed Khalid said:
I wish to draw the proton momentum spectrum by transforming the energy spectrum of recoil protons. I have calculated the energy spectrum using Nachtmann's spectrum: wp=g1[T]+a*g2[T]
Where:
g1[T]=(1 - x2/σ[T])2 * Sqrt[1 - σ[T]] * (4*(1 + x2/σ[T]) - (4/3*(σ[T] - x2)/σ[T])*(1 - σ[T]));
g2[T]=(1 - x2/σ[T])2 * Sqrt[1 - σ[T]] * (4*(1 + x2/σ[T] - 2*σ[T]) - 4/3*(σ[T] - x2)/σ[T]*(1 - σ[T]));
and σ[T]=1 - 2 * T * mn/(mn-mp)2
and a is the electron neutrino correlation.

To get the momentum spectrum, I am transforming the functions (non relativistically):
TofP[p]=p2/(2*mn)

wmom=wp[TofP[p]]

However this doesn't yield the correct spectrum for the momentum of the recoiled protons, as far as I have gotten it I have to multiply it with p and TofP[p] to get the shape of the correct spectrum (wmom=wp[TofP[p]]*p*TofP[p]). Which doesn't make sense to me, so if anyone can explain I would be highly thankful.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top