Ok, I've been working on this and am still confused. I think that I'm missing some key information at a very basic level and that's what's killing me. So basically, I'm modeling the mechanical performance of a material in terms of it's elastic and shear response in relation to it's porosity. I built a model that accounts for 3 different sets of inclusions within the material (using Hill's tensor) and determines the relation between porosity and each component of the mechanical performance tensors. Specifically I'm interested in the transverse and longitudinal elastic modulus, E1 and E3, and the transverse and longitudinal shear modulus, G13 and G12. Without getting into too many details, I came up with E1=E0/(1+P(H)E0) where E0 is the elastic response is there was no porosity, H is the sum of the hills tensor for the different pore types, P is the porosity of the material, and E1 is the longitudinal elastic modulus. I have similar expressions with different constants for E3, G12, and G13.
The model is done the paper is written, and at the last minute before we had submit it, my adviser asked me to add a statistical evaluation for how good of a fit our model is to the experimental data we were comparing it to. He does not have experience with statistical analysis and neither do I. He told me to do an r^2 regression analysis.
After looking at it more in depth, my understanding of the r^2 regression analysis is that it relates the x and y variables to see if there's a correlation. What I want is to see how well my model fits some data points. So I'm pretty sure he must have been mistaken when he asked me for a regression analysis r^2 value. u/maajdl suggested that I need chi^2 and I think he's completely right, I do. His formula involved x and y, but I only have one input, and his equation involved error, which I have no idea what to say on. I did not include error in my model and the published experimental data points I'm comparing my model to also seems to have no estimation on error.
SO- Wikipedia gave me this;
χ
2=\sum\overline{n}\underline{i=1}\stackrel{(O<sub>i</sub>-E<sub>i</sub>)<sup>2</sup>}{E<sub>i</sub>}
And I tried to do that with the latex, but I suck at it, so in case it's illegible, chi
2=sum(from 1-->n)(O
i-E
i)^2/E
i
Where E is the theoretical output and O is the experimental output. Basically, this is looking only at the experimental and theoretical values so I thought it was perfect, right? And I got a value of 2.007. Yay!
But wait. What is this, 2.007. What in the world do I do with it? So there are some graphs with some lines on wikipedia that talk about degrees of freedom and are very confusing... and I don't know how that relates to this at all.
http://en.wikipedia.org/wiki/Pearson's_chi-squared_test#Goodness_of_fit
I know a few things from my undergrad days about chi
2 in general... I know that it represents the amount of dispersion that the experimental has from the theoretical. But I don't know what this says about anything or what to do with this. I'm just really lost on all of this. Any help, explained to me on a fundamental level like I'm an undergrad or a high-school student, would be really appreciated.
u/FactChecker; I'm missing how the linear model compares to my model, if you could explain a little more I would really appreciate it. I'm not sure where to go with your comment.