Relation between occupation probability and first passage probability

AI Thread Summary
The discussion revolves around the interpretation of a probability expression related to particle arrival times and positions. It emphasizes that a particle arriving at a position r at time t has a first arrival at time t', which may be equal to t, and that the delta function indicates the particle was at position 0 initially. There is a question about whether the probability distribution P remains unchanged upon reaching position r, suggesting an implicit assumption of stationarity. The conversation highlights the importance of understanding how the distribution's dependence on time difference rather than absolute time affects the analysis. Overall, the thread seeks clarity on these probability concepts in the context of particle behavior.
WiFO215
Messages
416
Reaction score
1
Physics news on Phys.org
All the expression is saying is that a particle arriving at r at time t will have had a first arrival at r at time t' (which may = t) ahd then arrive at a relative position of 0 in time t-t'. The delta function term simply says that P(0,0) reflects the fact that it was at 0 to start with.
 
mathman said:
All the expression is saying is that a particle arriving at r at time t will have had a first arrival at r at time t' (which may = t) ahd then arrive at a relative position of 0 in time t-t'. The delta function term simply says that P(0,0) reflects the fact that it was at 0 to start with.

He is describing relative position zero using the same probability distribution P? So he is making the assumption there that P doesn't change once the thing reaches r? He hasn't mentioned this explicitly.
 
There is an implicit assumption of stationarity, i.e. the distribution depends only on time difference, not absolute time.
 
Okay! Thanks.
 
Hello! Let's say I have a cavity resonant at 10 GHz with a Q factor of 1000. Given the Lorentzian shape of the cavity, I can also drive the cavity at, say 100 MHz. Of course the response will be very very weak, but non-zero given that the Loretzian shape never really reaches zero. I am trying to understand how are the magnetic and electric field distributions of the field at 100 MHz relative to the ones at 10 GHz? In particular, if inside the cavity I have some structure, such as 2 plates...
Back
Top