Relationship between Differentiation and Integration?

In summary, the conversation discusses the relationship between differentiation and integration in calculus. Differentiation is defined as the use of limits to find the instantaneous rate of change, while integration is the opposite and involves finding the total change in a function. The fundamental theorem of calculus is also mentioned as a way to connect the two concepts. The speakers also discuss the intuitive understanding of differentiation as division and integration as multiplication. The conversation ends with the suggestion to use a graphical approach to further understand the relationship between distance, velocity, and time.
  • #1
Concavity
10
0
Hello everyone, I have a question that I have spent many nights pondering and hours on my whiteboard considering. I apologize in advance if this question seems a bit elementary, but to me it is something that I believe is all important before I can understand all of calculus.

How is differentiation, the use of limits that allows us to find the instantaneous rate of change (the slope), interals of increase/decrease, and one of the ways of deriving functins of velocity and acceleration

the opposite of

Integration, definite or indefinite, which is usually described as the limit of a infinite sum of areas under a curve(definite), or a family of functions (indefinite)?

I understand the mathematical justifications and proofs involving anti differentiation and the fundamental theorems of calculus, what I struggle with Is the Conceptual connection. My math teacher last year struggled to explain it to me but he said it had to do with D=vt?

Anyone's help is much appreciated:)
 
Physics news on Phys.org
  • #2
Well to the specific question of the relationship of velocity to distance.
Can you understand that Velocity is the rate at which distance changes? If so then the derivative (which is defined as the rate of change) of position would be velocity (and the same to acceleration).

As to the more broad integral/derivative question.
I struggled with the exact same thing for a while. What got me over it was this. Define integration as the opposite of differentiation, don't worry about the implications for area yet and just know that integration undoes differentiation. Then consider a function and its derivative. The derivative is the amount by which the function is changing, so by using the concept of differentials, a little bit of the derivative corresponds to the change in y of the original function, and as little bit becomes infinitely small, the change in y converges to absolute accuracy. Then realize that the sum of all of the little changes in y can be represented (without having any idea of the inbetween changes) by the ending value of the function minus the beginning value.

Combining this: the change in a function is equal to the sum of all the little changes of a function. Then realize that 'all the little changes' is equivalent to the derivative of the function times the differential dx. So you can write that:
∫ [itex]\frac{dy}{dx}[/itex] dx = total change

Then because the sum of changes is equal to the end value minus the beginning, you get the fundamental theorem of calculus.
 
Last edited:
  • #3
Concavity said:
Hello everyone, I have a question that I have spent many nights pondering and hours on my whiteboard considering. I apologize in advance if this question seems a bit elementary, but to me it is something that I believe is all important before I can understand all of calculus.

How is differentiation, the use of limits that allows us to find the instantaneous rate of change (the slope), interals of increase/decrease, and one of the ways of deriving functins of velocity and acceleration

the opposite of

Integration, definite or indefinite, which is usually described as the limit of a infinite sum of areas under a curve(definite), or a family of functions (indefinite)?

I understand the mathematical justifications and proofs involving anti differentiation and the fundamental theorems of calculus, what I struggle with Is the Conceptual connection. My math teacher last year struggled to explain it to me but he said it had to do with D=vt?

Anyone's help is much appreciated:)

Yes, the Fundamental Theorem of Calculus is just distance = rate * time on steroids.

Think of it this way. I'm in my car. I drive about 50 mph for a few minutes; then I drive about 45 mph for a few minutes; then I drive about 60 mph for a few minutes. To estimate how far I went, I take

(50mph * number of minutes at 50) + (45mph * number of minutes at 45) +
(60mph * number of minutes at 60). That's a decent approximation. It's approximate because within each interval my speed wasn't constant, but we just called it constant so we could use d = rt.

Now if you do the same thing over intervals of one second each instead of a few minutes ... you get a more accurate estimate. If you let the interval go to zero you get the FTC.
 
Last edited:
  • #4
Another way of thinking about it (I get the feeling you want a general, intuitive, grasp rather than specific formulas) is that the derivative is "division" (it generalizes "slope" of a line which is "rise/run") and integration is multiplication (it generalizes "area" of rectangle which is "length times height"). That is the basic reason they are inverse operations.
 
Last edited by a moderator:
  • #5
Wow. I am truly thankful for all of your answers, they all allowed me to look at my question in different ways and it kind of just clicked for me. So thank you 3 very much! It really helped me out,
- Concavity

Also, when I was reading these it occurred to me that perhaps I can prove this graphically with time as the independent variable on the x-axis and d(t) and v(t) plotted on the axes, observing their relations visually.
 
  • #6
Concavity said:
Wow. I am truly thankful for all of your answers, they all allowed me to look at my question in different ways and it kind of just clicked for me. So thank you 3 very much! It really helped me out,
- Concavity

Also, when I was reading these it occurred to me that perhaps I can prove this graphically with time as the independent variable on the x-axis and d(t) and v(t) plotted on the axes, observing their relations visually.

Yep.

I don't know if you have taken physics yet, but I took physics before I took calculus and looking back so much makes perfect sense when I look at things in terms of derivatives and integrals.
 

1. What is the difference between differentiation and integration?

Differentiation and integration are two fundamental operations in calculus. Differentiation is the process of finding the rate of change of a function with respect to its independent variable, while integration is the process of finding the area under a curve. In simpler terms, differentiation is like zooming in on a function to see how it changes at a specific point, while integration is like zooming out to see the overall picture of the function.

2. How are differentiation and integration related?

Differentiation and integration are inverse operations of each other. This means that differentiation "undoes" integration, and vice versa. For example, if you integrate a function and then differentiate the result, you will end up back at the original function.

3. What is the geometric interpretation of differentiation and integration?

The geometric interpretation of differentiation is finding the slope of the tangent line to a curve at a specific point. This slope represents the instantaneous rate of change of the function at that point. On the other hand, the geometric interpretation of integration is finding the area under a curve. This area represents the total change of the function over a given interval.

4. How are differentiation and integration used in real-world applications?

Differentiation is used to model and analyze the rate of change of various physical quantities, such as velocity, acceleration, and growth rates. Integration, on the other hand, is used to solve problems involving accumulation, such as finding the total distance traveled or the total cost of a product.

5. Can differentiation and integration be applied to non-mathematical fields?

Yes, differentiation and integration have applications in various fields such as physics, engineering, economics, and biology. They are used to model and analyze complex systems and phenomena, providing insights and solutions that would not be possible without these mathematical tools.

Similar threads

Replies
4
Views
2K
  • Differential Equations
Replies
1
Views
2K
Replies
10
Views
2K
Replies
3
Views
4K
Replies
4
Views
2K
Replies
2
Views
11K
Replies
9
Views
3K
Replies
22
Views
3K
  • Differential Geometry
Replies
5
Views
3K
  • Differential Equations
Replies
19
Views
2K
Back
Top