Relationship between Excess Pressure and Surface Tension for a Drop on a Fibre

AI Thread Summary
The discussion focuses on determining the excess pressure, ΔP, of a drop on a fiber using the Young-Laplace equation, which relates excess pressure to surface tension and curvature. The challenge arises in identifying the correct radii of curvature, R1 and R2, for the drop, which are needed for the equation. It is noted that two radii of curvature must be considered, lying in planes at right angles to each other and the tangent plane of the drop's surface. A clarification is sought regarding the center of curvature remaining on the x-axis, which is acknowledged as reasonable but requires further thought. Understanding these concepts is crucial for solving the problem effectively.
Raihan amin
Messages
45
Reaction score
0

Homework Statement


Think of a drop of radius ##R## deposited on a fibre of radius ##b(b<<L)##.Find ##{\Delta{P}}##

Homework Equations


The relationship between excess pressure and the surface tension is given by Yong-Laplace equation,
$$\Delta{P} = \sigma{(\frac{1}{R_1}+\frac{1}{R_2})}$$

The Attempt at a Solution

[/B]
Here i can't figure out what will be ##R_1##and##R_2## .I know that the curvature of radius is defined as $$R=\frac{y''}{(1+y'^2)^\frac 3 2 }$$ if ##y'##is the derivative of y with respect to ##x##.But in the solution, they have used two different formula for ##R_1## and ##R_2##.
Can anyone help me understand these?
 

Attachments

  • IMG_20190314_084826_557.jpg
    IMG_20190314_084826_557.jpg
    41.4 KB · Views: 229
  • IMG_20190314_084923_959.jpg
    IMG_20190314_084923_959.jpg
    36.9 KB · Views: 224
Physics news on Phys.org
Raihan amin said:

Homework Statement


Think of a drop of radius ##R## deposited on a fibre of radius ##b(b<<L)##.Find ##{\Delta{P}}##

Homework Equations


The relationship between excess pressure and the surface tension is given by Yong-Laplace equation,
$$\Delta{P} = \sigma{(\frac{1}{R_1}+\frac{1}{R_2})}$$

The Attempt at a Solution

[/B]
Here i can't figure out what will be ##R_1##and##R_2## .I know that the curvature of radius is defined as $$R=\frac{y''}{(1+y'^2)^\frac 3 2 }$$ if ##y'##is the derivative of y with respect to ##x##.But in the solution, they have used two different formula for ##R_1## and ##R_2##.
Can anyone help me understand these?
You need two radii of curvature lying in planes at right angles to each other and at right angles to the tangent plane of the surface.
The formula you quote is correct for the XY plane. The other plane is a bit tricky. A vertical slice gives a radius of y, but that plane is not at right angles to the tangent plane. To get the correct plane you have to tip it over at angle θ, as shown. The centre of curvature is still on the x-axis (is this obvious?) so the radius is y sec(θ).
 
  • Like
Likes Raihan amin
haruspex said:
The centre of curvature is still on the x-axis (is this obvious?) so the radius is y sec(θ).
Can you elaborate it,please ?
 
Raihan amin said:
Can you elaborate it,please ?
Are you asking for proof that the centre of curvature is still on the x axis? If not, what?
 
haruspex said:
Are you asking for proof that the centre of curvature is still on the x axis? If not, what?
Yes,i am asking for that
 
Raihan amin said:
Yes,i am asking for that
I can't think of a simple argument... looks reasonable but I need to think some more.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top