A Relationship between magnetic potential and current density in Maxwell

AI Thread Summary
The discussion centers on the relationship between magnetic potential and current density in the context of solving Maxwell's equations using finite element methods (FEM). It highlights a confusion regarding the assumption that current density (Jz) in the iron core can be set to zero when current flows only along the z-axis in a wire. This assumption leads to the conclusion that changes in the wire's current density do not affect the magnetic potential of the iron core, creating a contradiction. The conversation also mentions the importance of considering magnetization in the iron core, which introduces additional current density components that must be accounted for. Ultimately, the question posed was resolved, clarifying the relationship between current density and magnetic potential in this scenario.
JH_1870
Messages
3
Reaction score
1
I am currently studying to solve Maxwell's equations using FEM.

I have a question about Maxwell's equations while studying.

I understood that the magnetic potential becomes ▽^2 Az = -mu_0 Jz when the current flows only in the z-axis.

I also understood the effect of the current flowing in a conductor on the magnetic potential of the surrounding iron core by the Biot-Savar law. However, in the referenced FEM example, the current density (Jz) in the iron core is set to zero.

If the current flows only in the z-axis direction in the wire, it is considered correct that the z-axis current of the iron core is 0.

However, if this is applied as it is, it is understood that only Jz in the wire exists and Jz in the iron core is 0. Therefore, even if the current density of the wire is changed, it is understood that the magnetic potential of the iron core is not affected.

Obviously, the current density flowing in the conductor affects the magnetic potential of the surrounding iron core, but setting Jz of the iron core to 0 creates a contradiction.

Regarding this, I wonder if I have misunderstood the relationship between current density and magnetic potential, or if the method of setting Jz in the iron core to 0 is wrong.

I'm also wondering how to set the current density if the iron core's current density is not set to zero. The url below is my reference.

https://jorgensd.github.io/dolfinx-tutorial/chapter3/em.html
 
Physics news on Phys.org
I don't know whether I have a completely definitive answer, but if the iron core develops a magnetization ## \vec{M} ##, you will get a ## J_m=\nabla \times \vec{M} ## that needs to be taken into account, and what goes hand-in-hand with this is the magnetic surface current density per unit length ## \vec{K}_m=\vec{M} \times \hat{n} ## that contributes to the vector potential.
 
  • Like
Likes JH_1870 and vanhees71
Charles Link said:
I don't know whether I have a completely definitive answer, but if the iron core develops a magnetization ## \vec{M} ##, you will get a ## J_m=\nabla \times \vec{M} ## that needs to be taken into account, and what goes hand-in-hand with this is the magnetic surface current density per unit length ## \vec{K}_m=\vec{M} \times \hat{n} ## that contributes to the vector potential.
Thanks, the question has been solved.
 
  • Like
Likes Charles Link
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top