Relative Velocity while swimming

AI Thread Summary
The discussion focuses on a problem involving relative velocity while swimming across a river. A girl swims across a 60m wide river, taking 100 seconds and being carried 45m downstream due to the river's current. The calculated swimming speed relative to the water is 0.6 m/s, while the river's speed is 0.45 m/s. To return to her original starting point, she must swim at an angle upstream, which results in a calculated time of 75 seconds to cover the 45m downstream distance. The calculations confirm the relationship between her swimming speed, the river's current, and the time taken to swim back.
mcintyre_ie
Messages
66
Reaction score
0
Hey
I need a little help with this (B) question:

A girl wishes to siwim across a river 60m wide. The river flows with a velocity q m.s^-1 parallel to the straight banks and the girl swims at a velocity of p m.s^-1 relative to the water. In crossing the river as quickly as possible she takes 100s and is carried downstream 45m.
Find:
(I) P and Q
(II)How long will it take her to swim in a straight line back to the original starting point.

Ive done some of the basics here, which i know to be right, including the answers to part 1 - when i tried to bring it further i got answers which were obviously wrong for part 2. This is what I've got so far, any help would be appreciated:

Vr (welocity of river) = q m.s^-1
Vg/r )velocity of girl relative to river) = Vg - Vw
Vg = (pi + qj) m.s^-1

when t = 100s, d = 45i + 60j

P = 60/100 = .6m.s^-1

Q = 45/100 = .45m.s^-1

Vg/r = .6m.s^-1
Vr = .45 m.s^-1
 
Physics news on Phys.org
Your calculations are correct. She will cross the river fastest by swimming straight across and allowing the river to carry her down stream. Assuming her velocity relative to the water is <p,0> and the velocity of the river is <0,q> her actual velocity is <p,q> and so displacement in 100 seconds is <100p, 100q>= <60, -45>. p, the girl's speed relative to the water is .6 m/s and the speed of the river is .45 m/s.

In order to swim "in a straight line back to the original starting point", she will have to angle sharply upstream. Take the angle her "bearing" makes with a line directly across the river to be &theta;. Then her velocity relative to the water will be <.6 cos&theta;, .6 sin&theta> so her true velocity will be <.6 cos&theta;, -.45+ .6 sin&theta>. (I'm taking positive x, here, to be back across the river.)

Here displacement vector, in t seconds, will be
<.6 cos&theta; t, -.45t+ .6 sin&theta; t>= <60, 45> That gives 2 equations for t and theta. In particular, we can write
-.45t+ .6 sin&theta; t= 45 as -.45+ .6 sin&theta;= 45/t so that
.6 sin&theta;= 45/t+ .45.

Then (.6 sin&theta;)2= (45/t+ .45)2 and
(.6 cos&theta;)2= (45/t)2 so, adding
(45/t+ .45)2+ (45/t)2= 0.36.

Solve that quadratic equation for t.
 
Last edited by a moderator:


To find the time it takes for the girl to swim back to the original starting point, we can use the formula d = rt, where d is the distance, r is the rate or velocity, and t is the time. In this case, we want to find t, so we can rearrange the formula to t = d/r.

Since the girl is swimming back to the original starting point, the distance she needs to cover is 45m (the distance she was carried downstream). The velocity she is swimming at relative to the river is still .6m.s^-1, so we can plug in these values to find t:

t = 45/.6 = 75s

Therefore, it will take the girl 75 seconds to swim in a straight line back to the original starting point.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top