Relativistic Vectors: Opposite Direction Assumption

  • Thread starter Thread starter anantchowdhary
  • Start date Start date
  • Tags Tags
    Vectors
anantchowdhary
Messages
372
Reaction score
0
In special relativity we assume relative velocity of B wrt A is the same in magnitude and opposite in direction as of velocity of A wrt B. Now doesn't this demand that the position vectors in both frames(A's and B's) are the just opposite in direction...?

I mean to ask...how can we take for granted that the position vectors will just be the same in magnitude and opposite in direction ?? O_o

Thanks!
 
Physics news on Phys.org
Position vectors at what moment in each frame? Because of the relativity of simultaneity, you can't just compare the position vector of B in A's frame with the position vector of A in B's frame "at the same moment" as you could in classical physics.
 
What i meant to ask is that how is v(ba)=-v(ab) ??

In Newtonian mechanics we do this simply as we consider space to be absolute,so the vector as seen from A's origin to B's origin will be just the opposite of what it is from B's origin to A's origin(we take that for granted i guess)

So isn;t a vector frame specific??

According to SR it should be,shouldn't it?

So as you said,we ca't compare position vectors in both frames just like that,how can we say that the relative velocitues are same in magnitude ??

Thanks
 
Last edited:
anantchowdhary said:
What i meant to ask is that how is v(ba)=-v(ab) ??

In Newtonian mechanics we do this simply as we consider space to be absolute,so the vector as seen from A's origin to B's origin will be just the opposite of what it is from B's origin to A's origin(we take that for granted i guess)

So isn;t a vector frame specific??

According to SR it should be,shouldn't it?

So as you said,we ca't compare position vectors in both frames just like that,how can we say that the relative velocitues are same in magnitude ??
Well, when you talk about the symmetry of velocities in SR you're talking about the velocities of inertial objects which never accelerate, so whatever the value of their velocity is at one moment in a given frame, it should be the same at every other moment in that frame (unlike with position vectors which are constantly changing). The fact that v(ba) = -v(ab) can be derived from the Lorentz transformation, which itself is derived from the two basic postulates of SR.
 
JesseM said:
The fact that v(ba) = -v(ab) can be derived from the Lorentz transformation, which itself is derived from the two basic postulates of SR.

Could you please illustrate this

Thanks!
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top