Relativistic Vectors: Opposite Direction Assumption

  • Thread starter Thread starter anantchowdhary
  • Start date Start date
  • Tags Tags
    Vectors
anantchowdhary
Messages
372
Reaction score
0
In special relativity we assume relative velocity of B wrt A is the same in magnitude and opposite in direction as of velocity of A wrt B. Now doesn't this demand that the position vectors in both frames(A's and B's) are the just opposite in direction...?

I mean to ask...how can we take for granted that the position vectors will just be the same in magnitude and opposite in direction ?? O_o

Thanks!
 
Physics news on Phys.org
Position vectors at what moment in each frame? Because of the relativity of simultaneity, you can't just compare the position vector of B in A's frame with the position vector of A in B's frame "at the same moment" as you could in classical physics.
 
What i meant to ask is that how is v(ba)=-v(ab) ??

In Newtonian mechanics we do this simply as we consider space to be absolute,so the vector as seen from A's origin to B's origin will be just the opposite of what it is from B's origin to A's origin(we take that for granted i guess)

So isn;t a vector frame specific??

According to SR it should be,shouldn't it?

So as you said,we ca't compare position vectors in both frames just like that,how can we say that the relative velocitues are same in magnitude ??

Thanks
 
Last edited:
anantchowdhary said:
What i meant to ask is that how is v(ba)=-v(ab) ??

In Newtonian mechanics we do this simply as we consider space to be absolute,so the vector as seen from A's origin to B's origin will be just the opposite of what it is from B's origin to A's origin(we take that for granted i guess)

So isn;t a vector frame specific??

According to SR it should be,shouldn't it?

So as you said,we ca't compare position vectors in both frames just like that,how can we say that the relative velocitues are same in magnitude ??
Well, when you talk about the symmetry of velocities in SR you're talking about the velocities of inertial objects which never accelerate, so whatever the value of their velocity is at one moment in a given frame, it should be the same at every other moment in that frame (unlike with position vectors which are constantly changing). The fact that v(ba) = -v(ab) can be derived from the Lorentz transformation, which itself is derived from the two basic postulates of SR.
 
JesseM said:
The fact that v(ba) = -v(ab) can be derived from the Lorentz transformation, which itself is derived from the two basic postulates of SR.

Could you please illustrate this

Thanks!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top