Relativistic version of Newton's second law with parallel force

MasterNewbie
Messages
8
Reaction score
0

Homework Statement


"Given F=dp/dt. If the force is parallel to velocity show that F=γ3ma."


Homework Equations


F=dp/dt and p=γmv


The Attempt at a Solution


Since the force is the first derivative of the momentum with respect to time, and γ and v both vary with time since there is a net force causing both quantities to change, take the derivative of p using multiplication rule: dp/dt = m[γ'v+γa] γ'=γ3*v/c2 so this would change dp/dt to dp/dt = m[γ3(v/c)2+γa] After this I can't think of anywhere to go that could simplify this to the desired equation F=γ3ma.
 
Physics news on Phys.org
are you sure about \gamma and its derivative? there must be something wrong about it
 
Yeah, I did the derivative wrong, I forgot to do chain rule for the v2 so the derivative of γ would be γ3*va/c2

So then dp/dt = γma[γ2(v/c)2+1]. Assuming the math I did was right the only way I could get what I'm looking for is if (v/c)2 is equal to 1-1/γ2 so when you distribute you'd get γ2-1+1, then it would give dp/dt = F = γ3ma what I'm looking for.

I'll have to mess around with this.

[edit]
Coincidentally (v/c)2 does equal what it needs to equal to simplify to what the equation needs to be.

Thank you a lot Pull :)
[/edit]
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top