Relativity - velocity of object travelling perpendicular to the observer

AI Thread Summary
Two light beams colliding head-on can be interpreted to have a relative velocity of 2c in a specific inertial frame, but this does not violate relativistic speed limits as it is an abstract quantity. The confusion arises because light beams lack inertial reference frames, making their relative velocity calculations unconventional. For a particle moving north at 0.85c relative to an observer on Earth, and a ship traveling east at 0.9c, the relativistic velocity addition formula should be applied to find the particle's velocity from the ship's perspective. The final result involves using time dilation and Pythagorean theorem principles to determine the apparent velocity in the north direction while combining it with the ship's eastward velocity. Understanding these concepts clarifies how relative velocities can exceed c in abstract terms without implying any actual object exceeds the speed of light.
struggles
Messages
49
Reaction score
0

Homework Statement


  1. Two light beams collide head on. Calculate their relative velocity.
  2. (c) A particle moves north at speed 0.85c relative to an observer standing on the Earth. What is the velocity of this particle as observed by a fast ship traveling east on the Earth at speed 0.9c? Give the direction of travel with respect to a compass direction

Homework Equations

The Attempt at a Solution


1) A little confused by this question. I thought that speed of light is a constant no matter what reference frame it is viewed from so their relative velocity would be just c?

2) So speed between inertial frames u = 0.9c. Gamma γ = 1/√1-u2/c2 = 1/√0.19
However I'm unfamiliar with working with the velocity of the object perpendicular to the relative velocity between the frames.
I've found Vy' = Vy/γ(1 - uVx/c2 where the dash frame is the frame of the ship. For this question would i take Vx = 0 and Vy = 0.85c and just end up with Vy' = Vy/γ? There would then be only 'north' velocity and none in the east direction?
 
Physics news on Phys.org
struggles said:
Two light beams collide head on. Calculate their relative velocity.
Your confusion is well justified. This is a weird question. Normally when we ask about relative velocity, we ask 'what is the velocity of A relative to B', which means 'in the inertial, momentarily comoving reference frame of B, what is the velocity of A'.

But light beams cannot have inertial reference frames (or any other sensible reference frames), so the question cannot be interpreted in the usual way.

We could interpret it as meaning this:
In the inertial reference frame of an observer standing near the point where the two light beams will meet, with the beams traveling along the x axis, let ##x_a(t)## and ##x_b(t)## be the x coordinates of the two wavefronts at time ##t##. Then what is ##\frac d{dt}(x_a-x_b)##?

The answer to this will be ##2c##. That doesn't break any laws of physics because the ##2c## is not the velocity of any particle, massless or otherwise, or of any wave. It is a purely abstract quantity and hence not bound by relativistic speed limits.
 
  • Like
Likes Buzz Bloom
andrewkirk said:
Your confusion is well justified. This is a weird question. Normally when we ask about relative velocity, we ask 'what is the velocity of A relative to B', which means 'in the inertial, momentarily comoving reference frame of B, what is the velocity of A'.

But light beams cannot have inertial reference frames (or any other sensible reference frames), so the question cannot be interpreted in the usual way.

We could interpret it as meaning this:
In the inertial reference frame of an observer standing near the point where the two light beams will meet, with the beams traveling along the x axis, let ##x_a(t)## and ##x_b(t)## be the x coordinates of the two wavefronts at time ##t##. Then what is ##\frac d{dt}(x_a-x_b)##?

The answer to this will be ##2c##. That doesn't break any laws of physics because the ##2c## is not the velocity of any particle, massless or otherwise, or of any wave. It is a purely abstract quantity and hence not bound by relativistic speed limits.

I think that kind of makes sense. So you can view the relative change in velocity as being greater than c but it doesn't actually go faster than c? Any chance of a hint of how to do the second part of my question?
 
struggles said:
Two light beams collide head on. Calculate their relative velocity.
I would guess that the idea here is to apply the usual relativistic sum of velocities to show that the answer is still c.

For the second part, you could use time dilation to figure out the apparent velocity of the particle in the Northerly direction. Then recombine with the ship's velocity (I think Pythagoras applies here) to get the relative velocity. The result looks sensible anyway.
 
struggles said:
you can view the relative change in velocity as being greater than c
It's a relative change in position (of the two wavefronts), not a relative change of velocity.
but it doesn't actually go faster than c?
One needs to choose one's words carefully in relativity. What is the 'it' referring to?
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top