Representing spin operators in alternate basis

pondzo
Messages
168
Reaction score
0

Homework Statement



I want to find the matrix representation of the ##\hat{S}_x,\hat{S}_y,\hat{S}_z## and ##\hat{S}^2## operators in the ##S_x## basis (is it more correct to say the ##x## basis, ##S_x## basis or the ##\hat{S}_x## basis?).

Homework Equations



$$\hat{S}^2|s,m_s\rangle=s(s+1)\hbar^2|s,m_s\rangle$$
$$\hat{S}_z|s,m_s\rangle=m_s\hbar|s,m_s\rangle$$
$$\hat{S}_x|s,m_s\rangle=\frac{1}{2}(\hat{S}_++\hat{S}_-)|s,m_s\rangle$$
$$\hat{S}_y|s,m_s\rangle=\frac{1}{2i}(\hat{S}_+-\hat{S}_-)|s,m_s\rangle$$
$$\hat{S}_{\pm}|s,m_s\rangle=\sqrt{s(s+1)-m_s(m_s \pm 1)}\hbar|s,m_s \pm 1\rangle$$

3. The Attempt at a Solution


Finding these in the ##S_z## basis is simple enough. All I need to do is investigate how the basis vectors ##\{|\frac{1}{2},\frac{1}{2}\rangle \equiv |\alpha\rangle, |\frac{1}{2},\frac{-1}{2}\rangle\equiv |\beta\rangle\}## transform under the action of the operator i wish to represent. Then the columns of the matrix become the image of the basis vectors under the operation. However, I'm not sure what the eigenvectors (basis vectors) of ##S_x## are. On top of that, the actions of the operators i have supplied would no longer apply in a different basis, would they? I would prefer to do it via this method rather than using a similarity transform if possible. Thanks.
 
Physics news on Phys.org
Would I do it by defining the operators as follows?

##\hat{S}^2|s,m_s\rangle=s(s+1)\hbar^2|s,m_s\rangle##
##\hat{S}_x|s,m_s\rangle=m_s\hbar|s,m_s\rangle##
##\hat{S}_+=\hat{S}_y+i\hat{S}_z##
##\hat{S}_-=\hat{S}_y-i\hat{S}_z##
Which both imply that:
##\hat{S}_y=\frac{1}{2}(\hat{S}_++\hat{S}_-)##
##\hat{S}_z=\frac{1}{2}(\hat{S}_+-\hat{S}_-)##

And with the basis vectors of ##S_y##, ##|\alpha\rangle## and ##|\beta\rangle## defined as before?
 
pondzo said:
the basis vectors ##\{|\frac{1}{2},\frac{1}{2}\rangle \equiv |\alpha\rangle, |\frac{1}{2},\frac{-1}{2}\rangle\equiv |\beta\rangle\}## t
Which eigenvectors are they, ##S_x##, ##S_y##, or ##S_z##?
pondzo said:
However, I'm not sure what the eigenvectors (basis vectors) of SxSxS_x are.
Find out ##S_x## in matrix form in the basis of the eigenvectors of ##S_z## (this is the most common form found in any literature) then find its eigenvalues as well as its eigenvectors (in the basis of the eigenvectors of ##S_z##).
pondzo said:
On top of that, the actions of the operators i have supplied would no longer apply in a different basis, would they?
The operator equations you wrote above are the action on an eigenvector of ##S_z##. Moreover, the forms of those equation are in the basis-free, operator forms, therefore no matter which basis you chose the form of the above equations will not change. However, if you redefine the notation ##|s,m_s\rangle## to be the eigenvector of ##S_x##, then those equations will indeed look different.
pondzo said:
I would prefer to do it via this method rather than using a similarity transform if possible. Thanks.
It's not clear to me which method you were referring to. To be honest, in matrix form I know no other way to transform a matrix from one basis into another one unless using the usual similarity transformation.
 
Last edited:
This belongs in the advanced physics forum IMO.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top