Residues and non residues of general quadratic congruences

  • Thread starter Thread starter smslca
  • Start date Start date
  • Tags Tags
    General Quadratic
smslca
Messages
63
Reaction score
0
for a given range of x in Zn , and n is composite , and ax² + bx + c ≡ 0(mod n) and if (4a,n)=1,
I learned that we can solve the congruence by (2ax + b)² ≡ b²-4ac (mod n) ==> y² ≡ z (mod n)

So, if n is composite,

Sometimes I see, modulo 4an, when do we take 4an and n ,

how can we prove , there exists residues and non-residues as z values. for any range of x in Zn
Is there any range of x in general , such that there exists only either residues or non residues as solutions.

If i am wrong or obscure any where in my question , hope will be notified to me.
 
Last edited:
Physics news on Phys.org
sorry i messed it up, please help me to delete the post
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
3
Views
3K
Replies
3
Views
442
Replies
3
Views
4K
Replies
5
Views
8K
Replies
1
Views
2K
Replies
1
Views
4K
Back
Top