(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known dataThis is actually on Wikipedia, but it doesn't show how you actually calculate the residues.

I want to calculate the residues for ((log(z))^2)/(1+z^2)^2. Wikipedia claims the sum of the residues is (-(pi/4) + (i*(pi)^2)/16 - (pi/4) - (i*(pi)^2)/16) = -pi/2

2. Relevant equations

http://en.wikipedia.org/wiki/Methods_of_contour_integration

3. The attempt at a solutionThe singularities are at i and -i. Multiplying first by (z-i)^2 and taking the limit z ---> i, I get (log(i)^2)/4 = (log(e^(i*(pi/2))^2)/4 = -(pi^2)/16.

Then, multiplying by (z+i)^2 and taking the limit z ---> -i I get (log(e^-i*(pi/2))^2)/4 = -(pi^2)/16 again. Any help would be very much appreciated.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Residues of ((log(z))^2)/(1+z^2)^2

**Physics Forums | Science Articles, Homework Help, Discussion**