Redbelly98 said:
Claude, I've been thinking about this statement, which is at the heart of your argument, and disagree with it.
For low enough resistance, the induced current is large enough to create a magnetic field which mostly cancels the change in the applied magnetic field (i.e. the one due to the magnets moving relative to the coils).
Actual, net magnetic field is the sum of the applied field (from the moving magnets) and the induced field (from the induced current). And induced emf is the result of this net field. If total resistance (load + internal) is small enough, the induced field nearly cancels the external field change, so induced emf is smaller than it is for a larger resistance load.
Regards,
Mark
Good grief! Read my last half dozen posts in other threads and I've been saying the same thing. The problem with your position is that you are unwittingly assuming constant *torque* not constant speed. Of course the induced mmf/emf cancels the generated, reducing the output. But please remember that the result of the large mmf/emf due to the low output resistance is a counter *torque*. This counter torque opposes the input shaft torque and if the input torque is constant the speed will decrease and the voltage decreases. Your argument is correct for constant input torque.
But I stipulated constant shaft *speed*. When the counter mmf/emf due to the low load resistance cancels the generated mmf/emf reducing speed and voltage, the input torque can then be *increased* to cancel the counter torque. Thus the generated mmf/emf increases. Of course so will the counter mmf/emf increase, requiring more input torque. Eventually the original constant output voltage value is obtained, as long as the resistance of the load is greater than the output loop reactance. Suppose that the load induced mmf/emf results in 90% cancellation of the generated mmf/emf. The net output voltage is, of course, only 10% of no load, for constant torque. If we increase the input torque so that we generate 1000% of the no load mmf/emf, then 90% of 1000%, which is 900%, of the no load generated mmf/emf is cancelled. Thus the output voltage is 100% of the no load. It works out mathematically. Forcing constant speed results in constant voltage. Note that for a given torque and speed, we get a V and an I. Dropping the load R to 1/10th results in constant V with I increasing 10X. To obtain constant speed, we must increase the input torque 10X. Power is torque*speed mechanically, and I*V electrically. Conservation of energy is upheld.
If the resistance is lowered while the speed is held constant, the output will be constant voltage. The power dissipated in the resistance is (V^2)/R. The problem with lowering the resistance down to zero is as follows. There is an inductive reactance associated with the loop formed by the winding and the termination. When the resistance drops below this reactance, the induced mmf/emf is no longer in phase with the generated mmf/emf. The total impedance is the phasor sum of the resistance and the reactance, in quadrature (90 degree phase). At this load value, the reactive power exceeds the real or dissipative power. Reducing R further will then reduce the dissipated power, as the voltage divider action between the reactance and resistance results in a smaller voltage reaching the resistor. For the reactive component of the current, the counter torque is displaced by 90 degrees.
But, although the generated mmf/emf can be forced to remain constant by forcing constant speed, the voltage divider reduces the terminal output voltage, For a zero ohm load, i.e. superconducting, all the voltage drops across the inductance and none across the superconductor. Thus no dissipation takes place.
The source of confusion is in assuming real or resistive loading all the way down to zero ohms, which cannot happen. Although superconducting loops have no R, they always have L. We can't get around that.