Reverse Conditional Probabilities

tangodirt
Messages
51
Reaction score
1
I've written a modified mutation algorithm that I am trying to derive a more analytical probability model for. The basic algorithm works like this:

1. The probability of mutation is P(M) = 0.01.
2. If mutation occurs, then:
a. The probability that mutation-type A is P(A|M) = 0.50
b. The probability that mutation-type B is P(B|M) = 0.40
c. The probability that mutation-type C is P(C|M) = 0.10

My algorithm requires that P(A|M) + P(B|M) + P(C|M) = 1.

Now, I'm trying to derive what P(A), P(B), and P(C) are, but since it has been a long time since I've had a course in probability, I'm at a bit of a loss. My guess is to use Bayes' rule, but I'm not sure how I should be applying it.

My numerical MATLAB model is suggesting values such as 0.01 for M (which is known), 0.005 for P(A), 0.004 for P(B), and 0.001 for P(C). This leads me to believe Bayes' rule does not apply, but my understanding is that it does...

Can anyone provide me some help?
 
Physics news on Phys.org
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top