MHB Right-Angled Triangle Inequality

AI Thread Summary
In a right triangle with sides a, b, and hypotenuse c, it is established that the inequality $$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$ holds true. The discussion involves proving this inequality through various mathematical approaches. Participants explore different methods of manipulation and substitution to validate the inequality. The conversation emphasizes the importance of understanding the properties of right triangles in relation to the derived expression. Ultimately, the proof reinforces fundamental concepts in triangle inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $a,\,b$ and $c$ are the lengths of the sides of a right triangle with hypotenuse $c$, then

$$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$
 
Mathematics news on Phys.org
anemone said:
Show that if $a,\,b$ and $c$ are the lengths of the sides of a right triangle with hypotenuse $c$, then

$$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$

From law of symmetry we shall have this shall have extremum at a = b giving $c= \sqrt{2}a$ and
$LHS = \frac{(c − a)(c − b)}{(c + a)(c + b)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)^2}= (\sqrt{2}-1)^4 = 17 - 12\sqrt{2}$
taking another point (a = 0, c=b) we get LHS = 0
hence $\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$
 
kaliprasad said:
From law of symmetry we shall have this shall have extremum at a = b giving $c= \sqrt{2}a$ and
$LHS = \frac{(c − a)(c − b)}{(c + a)(c + b)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)^2}= (\sqrt{2}-1)^4 = 17 - 12\sqrt{2}$
taking another point (a = 0, c=b) we get LHS = 0
hence $\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$
$a,b,\,\, and\,, c$ are the lengths of the sides of a right triangle
$a$ cannot be $"0"$
and more :
$c$ is hypotenuse ,we have $b<c$
 
Last edited:
Albert said:
$a,b,\,\, and\,, c$ are the lengths of the sides of a right triangle
$a$ cannot be $"0"$
and more :
$c$ is hypotenuse ,we have $b<c$

What you are telling is right. I took the limiting case
 
My solution:

We have $c^2−a^2=b^2 \implies c−a=\dfrac{b^2}{c+a}$.

By the similar token, we also have $c−b=\dfrac{a^2}{c+b}$, if we're going to replace these two into the original LHS of the inequality, we get:$$\begin{align*}\frac{(c − a)(c − b)}{(c + a)(c + b)}&=\frac{(b^2)(a^2)}{(c + a)^2(c + b)^2}\\&=\left(\frac{ab}{(c + a)(c + b)}\right)^2\\&=\left(\frac{ab}{c^2+c(a+b)+ab}\right)^2\\&=\left(\frac{1}{\dfrac{c^2}{ab}+\dfrac{c(a+b)}{ab}+1}\right)^2\\&\le \left(\frac{1}{\dfrac{c^2}{ab}+\dfrac{c(2\sqrt{ab})}{ab}+1}\right)^2\,\,\text{(by the AM-GM inequality)}\\& = \left(\frac{1}{\left(\dfrac{c}{\sqrt{ab}}\right)^2+\dfrac{2c}{\sqrt{ab}}+1}\right)^2\text{but from $c^2=a^2+b^2\ge 2ab$, we get $\dfrac{c}{\sqrt{ab}}\ge \sqrt{2}$}\\& \le \left(\frac{1}{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\right)^2\\&= \left(3-2\sqrt{2}\right)^2\\&= 17-12\sqrt{2}\,\,\,\text{Q.E.D.}\end{align*}$$
Equality occurs when $a=b$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top