Right-Angled Triangle Inequality

Click For Summary

Discussion Overview

The discussion revolves around proving an inequality involving the sides of a right triangle, specifically the expression $$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$ where \(a\), \(b\), and \(c\) are the lengths of the sides with \(c\) as the hypotenuse. The focus is on mathematical reasoning and proof techniques related to this inequality.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Some participants present the inequality to be proven, reiterating the same mathematical expression.
  • A participant begins to outline their solution approach, though the details of the solution are not provided in the excerpts.

Areas of Agreement / Disagreement

There is no indication of disagreement or consensus as the discussion primarily consists of the presentation of the inequality and the initiation of a solution.

Contextual Notes

The discussion lacks detailed assumptions or definitions that may be necessary for a complete understanding of the inequality's context. The mathematical steps leading to the proof are not yet explored.

Who May Find This Useful

Readers interested in inequalities related to triangle geometry, mathematical proofs, or those studying properties of right triangles may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $a,\,b$ and $c$ are the lengths of the sides of a right triangle with hypotenuse $c$, then

$$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$
 
Mathematics news on Phys.org
anemone said:
Show that if $a,\,b$ and $c$ are the lengths of the sides of a right triangle with hypotenuse $c$, then

$$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$

From law of symmetry we shall have this shall have extremum at a = b giving $c= \sqrt{2}a$ and
$LHS = \frac{(c − a)(c − b)}{(c + a)(c + b)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)^2}= (\sqrt{2}-1)^4 = 17 - 12\sqrt{2}$
taking another point (a = 0, c=b) we get LHS = 0
hence $\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$
 
kaliprasad said:
From law of symmetry we shall have this shall have extremum at a = b giving $c= \sqrt{2}a$ and
$LHS = \frac{(c − a)(c − b)}{(c + a)(c + b)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)^2}= (\sqrt{2}-1)^4 = 17 - 12\sqrt{2}$
taking another point (a = 0, c=b) we get LHS = 0
hence $\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$
$a,b,\,\, and\,, c$ are the lengths of the sides of a right triangle
$a$ cannot be $"0"$
and more :
$c$ is hypotenuse ,we have $b<c$
 
Last edited:
Albert said:
$a,b,\,\, and\,, c$ are the lengths of the sides of a right triangle
$a$ cannot be $"0"$
and more :
$c$ is hypotenuse ,we have $b<c$

What you are telling is right. I took the limiting case
 
My solution:

We have $c^2−a^2=b^2 \implies c−a=\dfrac{b^2}{c+a}$.

By the similar token, we also have $c−b=\dfrac{a^2}{c+b}$, if we're going to replace these two into the original LHS of the inequality, we get:$$\begin{align*}\frac{(c − a)(c − b)}{(c + a)(c + b)}&=\frac{(b^2)(a^2)}{(c + a)^2(c + b)^2}\\&=\left(\frac{ab}{(c + a)(c + b)}\right)^2\\&=\left(\frac{ab}{c^2+c(a+b)+ab}\right)^2\\&=\left(\frac{1}{\dfrac{c^2}{ab}+\dfrac{c(a+b)}{ab}+1}\right)^2\\&\le \left(\frac{1}{\dfrac{c^2}{ab}+\dfrac{c(2\sqrt{ab})}{ab}+1}\right)^2\,\,\text{(by the AM-GM inequality)}\\& = \left(\frac{1}{\left(\dfrac{c}{\sqrt{ab}}\right)^2+\dfrac{2c}{\sqrt{ab}}+1}\right)^2\text{but from $c^2=a^2+b^2\ge 2ab$, we get $\dfrac{c}{\sqrt{ab}}\ge \sqrt{2}$}\\& \le \left(\frac{1}{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\right)^2\\&= \left(3-2\sqrt{2}\right)^2\\&= 17-12\sqrt{2}\,\,\,\text{Q.E.D.}\end{align*}$$
Equality occurs when $a=b$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 59 ·
2
Replies
59
Views
138K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K