MHB Right-Angled Triangle Inequality

Click For Summary
In a right triangle with sides a, b, and hypotenuse c, it is established that the inequality $$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$ holds true. The discussion involves proving this inequality through various mathematical approaches. Participants explore different methods of manipulation and substitution to validate the inequality. The conversation emphasizes the importance of understanding the properties of right triangles in relation to the derived expression. Ultimately, the proof reinforces fundamental concepts in triangle inequalities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $a,\,b$ and $c$ are the lengths of the sides of a right triangle with hypotenuse $c$, then

$$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$
 
Mathematics news on Phys.org
anemone said:
Show that if $a,\,b$ and $c$ are the lengths of the sides of a right triangle with hypotenuse $c$, then

$$\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$$

From law of symmetry we shall have this shall have extremum at a = b giving $c= \sqrt{2}a$ and
$LHS = \frac{(c − a)(c − b)}{(c + a)(c + b)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)^2}= (\sqrt{2}-1)^4 = 17 - 12\sqrt{2}$
taking another point (a = 0, c=b) we get LHS = 0
hence $\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$
 
kaliprasad said:
From law of symmetry we shall have this shall have extremum at a = b giving $c= \sqrt{2}a$ and
$LHS = \frac{(c − a)(c − b)}{(c + a)(c + b)} = \frac{(\sqrt{2}-1)^2}{(\sqrt{2}+1)^2}= (\sqrt{2}-1)^4 = 17 - 12\sqrt{2}$
taking another point (a = 0, c=b) we get LHS = 0
hence $\frac{(c − a)(c − b)}{(c + a)(c + b)}\le 17 − 12\sqrt{2}$
$a,b,\,\, and\,, c$ are the lengths of the sides of a right triangle
$a$ cannot be $"0"$
and more :
$c$ is hypotenuse ,we have $b<c$
 
Last edited:
Albert said:
$a,b,\,\, and\,, c$ are the lengths of the sides of a right triangle
$a$ cannot be $"0"$
and more :
$c$ is hypotenuse ,we have $b<c$

What you are telling is right. I took the limiting case
 
My solution:

We have $c^2−a^2=b^2 \implies c−a=\dfrac{b^2}{c+a}$.

By the similar token, we also have $c−b=\dfrac{a^2}{c+b}$, if we're going to replace these two into the original LHS of the inequality, we get:$$\begin{align*}\frac{(c − a)(c − b)}{(c + a)(c + b)}&=\frac{(b^2)(a^2)}{(c + a)^2(c + b)^2}\\&=\left(\frac{ab}{(c + a)(c + b)}\right)^2\\&=\left(\frac{ab}{c^2+c(a+b)+ab}\right)^2\\&=\left(\frac{1}{\dfrac{c^2}{ab}+\dfrac{c(a+b)}{ab}+1}\right)^2\\&\le \left(\frac{1}{\dfrac{c^2}{ab}+\dfrac{c(2\sqrt{ab})}{ab}+1}\right)^2\,\,\text{(by the AM-GM inequality)}\\& = \left(\frac{1}{\left(\dfrac{c}{\sqrt{ab}}\right)^2+\dfrac{2c}{\sqrt{ab}}+1}\right)^2\text{but from $c^2=a^2+b^2\ge 2ab$, we get $\dfrac{c}{\sqrt{ab}}\ge \sqrt{2}$}\\& \le \left(\frac{1}{\left(\sqrt{2}\right)^2+2\sqrt{2}+1}\right)^2\\&= \left(3-2\sqrt{2}\right)^2\\&= 17-12\sqrt{2}\,\,\,\text{Q.E.D.}\end{align*}$$
Equality occurs when $a=b$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 59 ·
2
Replies
59
Views
33K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K