Roller coaster, ball attached to coaster by a string calculate various tension

AI Thread Summary
The discussion revolves around calculating the tension components in a string suspending a ball from a roller coaster car under various conditions. The user is struggling particularly with parts C and D of the problem, which involve different accelerations while moving up and down a 30° incline. For part C, the user concluded that the horizontal tension is 0N due to constant speed, but miscalculated the vertical tension, expecting it to be 1.13N instead of the correct 1N. In part D, the user incorrectly calculated both tension components while moving down the incline with an acceleration of 5.0 m/s², leading to confusion about the correct formulas and values. Clarification on the inclusion of gravitational force in the vertical tension calculations is suggested as a potential solution to the user's issues.
yoyolala
Messages
2
Reaction score
0

Homework Statement



http://img57.imageshack.us/my.php?image=fullscreencapture322009.jpg

Part of the track of an amusement park roller coaster is shaped as shown below. A safety bar is oriented length-wise along the top of each car. In one roller coaster car, a small 0.10 kilogram ball is suspended from this bar by a short length of light, inextensible string.

The car is then accelerated horizontally, goes up a 30° incline, goes down a 30° incline, and then goes around a vertical circular loop of radius 25 meters. For each of the four situations described in parts (B) to (E), do all three of the following. In each situation, assume that the ball has stopped swinging back and forth. 1) Determine the horizontal component Th of the tension in the string in Newtons and record your answer in the space provided. 2) Determine the vertical component Tv of the tension in the string in Newtons and record your answer in the space provided. 3) Show on the adjacent diagram the approximate direction of the string with respect to the vertical. The dashed line shows the vertical in each situation.

[[[[ I'm having trouble on parts C and D ]]]]] which look like...

http://img10.imageshack.us/my.php?image=fullscreencapture322009.jpg

Homework Equations

I'm pretty sure I got all the other parts right and I guess I'm just confused on parts c and d The answers are supposed to be:

(c) T horiz = 0N
T vert = 1N
(d) T horiz = .43 N
T vert = .75 N

The Attempt at a Solution



I drew FBD for parts C and D and my explanations are based off of those and I'm thinking maybe I didn't draw them right...

In part C:


for the horizontal component, I got the tension to be 0N because it says it is pulled up the incline with a constant speed therefore a=0.
F=ma a=0
Tsin(theta)=0
T=0 N

And for the vertical component
,
F=ma a=0
Tcos(theta)-mg=0
solve for T where m=.1 kg and theta=30 degrees
T= 1.13 N which isn't right

In part D:

totally got this wrong...

Moves down the incline with a=5.0 m/s^2

For the horizontal component of the tension:
F=ma
Tsin(theta)=ma
T= (ma) / sintheta where a=5, and theta=30
T=1.0N? Not right

For the vertical component of the tension:

F=ma
Tcos(theta)-mg=ma
T=(ma+mg)/(costheta) where a=5, and theta=30
T= 1.71 N ??

Help...?
 
Physics news on Phys.org
Maybe I'm completely off here, I'm also a student stuck on the same problem, but the vertical tension force would always include the gravitational force downward, which would equal 1 Newton, as you figured out in a. At least for the vertical component, that may be the issue.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top