Adel Makram said:
in fact my problem is as follow:
a1x(1+2f)+a2x(1+f)+a3x(2+f)+a4xf+a5x=0
Where practically 1/2 <f<2
so at first post you wanted to solve something like this?
a
1e
(1+2f)x+a
2e
(1+f)x+a
3e
(2+f)x+a
4e
fx+a
5e
x=0
by
##e^z=\sum_{n=0}^{\infty} \frac{z^n}{n!}##
we get
##\sum_{n=0}^{\infty} \frac{a_1((1+2f)x)^n+a_2((1+f)x)^n+a_3((2+f)x)^n+a_4(fx)^n+a_5x^n}{n!}=0##
##\sum_{n=0}^{\infty} \frac{a_1(1+2f)^nx^n+a_2(1+f)^nx^n+a_3(2+f)^nx^n+a_4f^nx^n+a_5x^n}{n!}=0##
##A=\sum_{n=0}^{\infty} \frac{[a_1(1+2f)^n+a_2(1+f)^n+a_3(2+f)^n+a_4f^n+a_5]x^n}{n!}=0##
for fixed f ##\in (0.5,2)##
from Schwarz for ##a_n, b_n \in ℝ##
##|\sum^{\infty}_{n=0} a_n b_n|^2 \leq \sum^{\infty}_{n=0} |a_n|^2\sum^{\infty}_{n=0} |b_n|^2 ##
or some other way i think you have to show that ##a_1(1+2f)^n+a_2(1+f)^n+a_3(2+f)^n+a_4f^n+a_5=0## for every n if A=0.
I am not sure is it true.
Then you will get equations for every n...
##a_1(1+2f)+a_2(1+f)+a_3(2+f)+a_4f+a_5=0##
##a_1(1+2f)^2+a_2(1+f)^2+a_3(2+f)^2+a_4f^2+a_5=0##
.
..
...
hope it helps...