MHB Rudra Rath's question at Yahoo Answers involving an arithmetic series

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Arithmetic Series
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

An arithmetic progression question!?

the first and last terms of an A.P. are a and l respectively. if S be the sum of the terms, then show that the common difference is ( l^2 - a^2 ) / { 2S - (l+a) }

Here is a link to the question:

An arithmetic progression question!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Rudra Rath,

We are told:

(1) $$a_1=a$$

(2) $$a_n=a+(n-1)d=\ell$$

(3) $$S=\frac{n(a+\ell)}{2}$$

Now, solving (2) for $d$, we find:

(4) $$d=\frac{\ell-a}{n-1}$$

Solving (3) for $n$, we find:

(5) $$n=\frac{2S}{a+\ell}$$

Substituting for $n$ from (5) into (4), we obtain:

$$d=\frac{\ell-a}{\frac{2S}{a+\ell}-1}\cdot\frac{\ell+a}{\ell+a}=\frac{\ell^2-a^2}{2S-(\ell+a)}$$

Shown as desired.

To Rudra Rath and any other guests viewing this topic, I invite and encourage you to post other arithmetic series questions in our http://www.mathhelpboards.com/f2/ forum.

Best Regards,

Mark.
 
An alternative method:

If you have an arithmetic series, the sum of the first n terms can be found either using [math]\displaystyle S_n = \frac{n}{2} \left( a+ l \right) [/math] or [math]\displaystyle S = \frac{n}{2} \left[ 2a + \left( n - 1 \right) d \right] [/math]. So clearly we can see

[math]\displaystyle \begin{align*} \frac{n}{2} \left( a + l \right) &= \frac{n}{2} \left[ 2a + \left( n - 1 \right) d \right] \\ a + l &= 2a + \left( n - 1 \right) d \\ l - a &= \left( n - 1 \right) d \\ \frac{l - a}{n - 1} &= d \\ \frac{ \left( l - a \right) \left( l + a \right) }{ \left( a + l \right) \left( n - 1 \right) } &= d \\ \frac{ l^2 - a^2}{ n \left( a + l \right) - \left(a + l \right) } &= d \\ \frac{ l^2 - a^2 }{ 2 \left[ \frac{n}{2} (a + l) \right] - (a + l) } &= d \\ \frac{ l^2 - a^2 }{ 2S_n - (a + l) } &= d \end{align*}[/math]
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top