S.Carrol Exercise G.10: Proving Conformal Killing Vector

  • Thread starter Thread starter chronnox
  • Start date Start date
  • Tags Tags
    Exercise
chronnox
Messages
11
Reaction score
0
1. The problem statement

I need to prove that if two metrics are related by an overall conformal transformation of the form \overline{g}_{ab}=e^{a(x)}g_{ab} and if k^{a} is a killing vector for the metric g_{ab} then k^{a} is a conformal killing vector for the metric \overline{g}_{ab}

Homework Equations



killing equation
killing conformal equation

The Attempt at a Solution



i think i need to show that \overline{\nabla}_{a}k_{b}+\overline{\nabla}_{b}k_{a}=(k^{r}\nabla_{r}a(x))\overline{g}_{ab}

which as far as i understand is the killing conformal equation for the metric \overline{g}_{ab}

so using the relation \overline{\nabla}_{a}k_{b}=\nabla_{a}k_{b}-C^{r}_{ab}k_{c}

where C^{r}_{ab} are the connection coefficients relating the derivative operatrors for g_{ab} and \overline{g}_{ab}

i sustitute this in \overline{\nabla}_{a}k_{b}+\overline{\nabla}_{b}k_{a}

and using killing equation for the metric g_{ab} i obtain:

\overline{\nabla}_{a}k_{b}+\overline{\nabla}_{b}k_{a}=-k_{a}\nabla_{b}a(x)-k_{b}\nabla_{a}a(x)+g_{ab}k^{r}\nabla_{r}a(x)

which is not the conformal killing equation so I am lost , can anyone help me on this?
 
Physics news on Phys.org
Try using LaTex in your post; you may get more of a response. Use the tags [ tex] [ /tex] or [ itex] [ /itex] for normal Tex and inline, respectively (without the spaces in the brackets).
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top