OK, I almost got it this time.
<br />
\begin{eqnarray}<br />
\left[ x_i, F(\mathbf{p}) \right] & = & \left[ x_i, F(\mathbf{0}) + \Sigma_{n=1}^\infty \left( \frac{\partial^n F(\mathbf{p})}{\partial p^n} \right)_{\mathbf{p} = \mathbf{0}} \frac{\mathbf{p}^n}{n!} \right]\\<br />
& = & \left[ x_i, \Sigma_{n=1}^\infty \left( \frac{\partial^n F(\mathbf{p})}{\partial p^n} \right)_{\mathbf{p} = \mathbf{0}} \frac{\mathbf{p}^n}{n!} \right]\\<br />
& = & \Sigma_{n=1}^\infty \left( \frac{\partial^n F(\mathbf{p})}{\partial p^n} \right)_{\mathbf{p} = \mathbf{0}} \frac{1}{n!} \left[x_i, \mathbf{p}^n \right]<br />
\end{eqnarray}<br />
Then,
<br />
\left[x_i,\mathbf{p}^n \right]<br />
= \left[x_i,\mathbf{p} \cdot \mathbf{p}^{n-1} \right] = \left[x_i,\mathbf{p} \right] \mathbf{p}^{n-1} + x_i \left[\mathbf{p}, \mathbf{p}^{n-1} \right] = i \hbar \mathbf{p}^{n-1}<br />
Plugging this back in,
<br />
\begin{eqnarray}<br />
\left[ x_i, F(\mathbf{p}) \right]<br />
& = & i \hbar \Sigma_{n=1}^\infty \left( \frac{\partial^n F(\mathbf{p})}{\partial p^n} \right)_{\mathbf{p} = \mathbf{0}} \frac{\mathbf{p}^{n-1}}{n!}\\<br />
& = & i \hbar \Sigma_{n=1}^\infty \left( \frac{\partial^{n-1} \left( \frac{ \partial F(\mathbf{p})}{\partial p} \right) } {\partial p^{n-1}} \right)_{\mathbf{p} = \mathbf{0}} \frac{\mathbf{p}^{n-1}}{n!}\\<br />
& = & i \hbar \Sigma_{n=0}^\infty \left( \frac{\partial^{n} \left( \frac{ \partial F(\mathbf{p})}{\partial p} \right) } {\partial p^{n}} \right)_{\mathbf{p} = \mathbf{0}} \frac{\mathbf{p}^{n}}{(n+1)!}<br />
\end{eqnarray}<br />
If I somehow changed that (n+1) to an n, that would be the answer. Where did I go wrong?