Sakurai Problem 1.12: Probability of Getting +h/2

  • Thread starter Bill Foster
  • Start date
  • Tags
    Sakurai
I'm sorry, I fell asleep. What were you saying?I was explaining that in the \textbf{S}\cdot\mathbf{\hat{n}} eigenbasis, the operator \textbf{S}\cdot\mathbf{\hat{n}} has eigenstates |\mathbf{\hat{n}},+\rangle and |\mathbf{\hat{n}},-\rangle with corresponding eigenvalues +\frac{\hbar}{2} and -\frac{\hbar}{2}, respectively.Additionally, the extra label \mathbf{\hat{n}} is just there to make it clear that these eigenstates are the eigenstates of \textbf{S}\cdot\mathbf{\hat{n}} specifically, not just any operator in general
  • #1
Bill Foster
338
0

Homework Statement



A spin ½ system is known to be in an eigenstate of [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex] with eigenvalue [itex]\frac{\hbar}{2}[/itex] , where [tex]\hat{\textbf{n}}[/tex] is a unit vector lying in the xy-plane that makes an angle γ with the positive z-axis.

a. Suppose [tex]S_x[/tex] is measured. What is the probability of getting [itex]+\frac{\hbar}{2}[/itex]?

The Attempt at a Solution



[tex]|\hat{\textbf{n}},+\rangle = \cos\left(\frac{\beta}{2}\right)|+\rangle + \sin\left(\frac{\beta}{2}\right)|-\rangle[/tex]

[tex]\langle S_x,+|\hat{\textbf{n}},+\rangle = \left(\frac{\langle +|+\langle -|}{\sqrt{2}}\right)\left(\cos\left(\frac{\gamma}{2}\right)|+\rangle + \sin\left(\frac{\gamma}{2}\right)|-\rangle\right)=\frac{1}{\sqrt{2}}\left(\cos\left(\frac{\gamma}{2}\right)+\sin\left(\frac{\gamma}{2}\right)\right)[/tex]

The probability of getting [itex]\frac{\hbar}{2}[/itex] is

[tex]P=|{\langle S_x,+|\hat{\textbf{n}},+\rangle|^2=\frac{1+\sin\gamma}{2}[/tex]

I don't really understand this solution.

Why are they using [tex]\langle S_x,+|\hat{\textbf{n}},+\rangle[/tex] instead of [tex]\langle S_x|\hat{\textbf{n}}\rangle[/tex]?

And how does [itex]\frac{\hbar}{2}[/itex] come into play here? What if we were looking for the probability of getting something other than [itex]\frac{\hbar}{2}[/itex], like [itex]\frac{\hbar}{4}[/itex] for example? How would that change it?
 
Physics news on Phys.org
  • #2
What are the eigenvalues and eigenstates of [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] ?
 
  • #3
gabbagabbahey said:
What are the eigenvalues and eigenstates of [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] ?

According to the problem statement:

A spin ½ system is known to be in an eigenstate of [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex] with eigenvalue [itex]\frac{\hbar}{2}[/itex] .

So I guess [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex] is the eigenstate, and [itex]\frac{\hbar}{2}[/itex] is its eigenvalue.
 
  • #4
No, [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] is an operator, not an eigenstate. What are its eigenvalues and eigenstates?
 
  • #5
I don't know.
 
  • #6
You do understand that [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] is the component of the total spin operator along [itex]\mathbf{\hat{n}}[/itex] right?

What are the eigenvalues and eigenvector of any component of the spin operator?
 
  • #7
gabbagabbahey said:
You do understand that [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] is the component of the total spin operator along [itex]\mathbf{\hat{n}}[/itex] right?

Yes. But isn't it a state?

What are the eigenvalues and eigenvector of any component of the spin operator?

[tex]S_x=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)[/tex]
[tex]S_y=\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)[/tex]
[tex]S_z=\frac{\hbar}{2}\left(|+\rangle - |-\rangle\right)[/tex]
 
  • #8
Is this where you're going?

[tex]\textbf{S}\cdot\hat{\textbf{n}}=\left(S_x\hat{\textbf{x}}+S_y\hat{\textbf{y}}+S_z\hat{\textbf{z}}\right)\cdot\left(\sin{\theta}cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}\right)=S_x\cos{\phi}+S_y\sin{\phi}[/tex]

Because [tex]\theta=\frac{\pi}{2}[/tex]

So that means

[tex]\textbf{S}\cdot\hat{\textbf{n}}=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}+\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)\sin{\phi}[/tex]
 
  • #9
Bill Foster said:
Yes. But isn't it a state?

Is [itex]S_x[/itex] a state?
[tex]S_z=\frac{\hbar}{2}\left(|+\rangle - |-\rangle\right)[/tex]

In the [itex]S_z[/itex] eigenbasis, yes.

More generally, in the [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] eigenbasis, the eigenvalues and corresponding eigenstates of [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] are [itex]\pm\frac{\hbar}{2}[/itex] and [itex]|\mathbf{\hat{n}},\pm\rangle[/itex]... Have you really not seen this before?
 
  • #10
gabbagabbahey said:
Is [itex]S_x[/itex] a state?

No. But the problem statement says it's in an eigenstate of [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex]. What does that mean?
More generally, in the [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] eigenbasis, the eigenvalues and corresponding eigenstates of [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] are [itex]\pm\frac{\hbar}{2}[/itex] and [itex]|\mathbf{\hat{n}},\pm\rangle[/itex]... Have you really not seen this before?

Not that I can recall.
 
  • #11
Bill Foster said:
No. But the problem statement says it's in an eigenstate of [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex]. What does that mean?

It means that ther system is in some state [itex]|\psi\rangle[/itex] such that [itex]\textbf{S}\cdot\hat{\textbf{n}}|\psi\rangle=\frac{\hbar}{2}|\psi\rangle[/itex]...this is the definition of eigenstate.




Not that I can recall.

Do you understand it though?
 
  • #12
gabbagabbahey said:
It means that ther system is in some state [itex]|\psi\rangle[/itex] such that [itex]\textbf{S}\cdot\hat{\textbf{n}}|\psi\rangle=\frac{\hbar}{2}|\psi\rangle[/itex]...this is the definition of eigenstate.

Do you understand it though?

Is this what you're saying:

[tex]
\textbf{S}\cdot\hat{\textbf{n}}=\textbf{S}|\hat{\textbf{n}}\pm\rangle=\frac{\hbar}{2}|\hat{\textbf{n}}\pm\rangle
[/tex]

?
 
  • #13
Bill Foster said:
Is this what you're saying:

[tex]
\textbf{S}\cdot\hat{\textbf{n}}=\textbf{S}|\hat{\textbf{n}}\pm\rangle=\frac{\hbar}{2}|\hat{\textbf{n}}\pm\rangle
[/tex]

?

No. Again, [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] is an operator, not an eigenstate. [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] is an operator just like [itex]S_z\equiv\textbf{S}\cdot\hat{\textbf{z}}[/itex] is an operator.
 
  • #14
What, then, is it operating on?
 
  • #15
Bill Foster said:
What, then, is it operating on?

In this problem, it isn't acting on any state at all. But, like every other operator it has eigenvalues and eigenstates. The system in this problem is known to be in one of those eigenstates; specifically, the eigenstate with corresponding eigenvalue of [itex]+\frac{\hbar}{2}[/itex].

Bill Foster said:
[tex]S_z=\frac{\hbar}{2}\left(|+\rangle - |-\rangle\right)[/tex]

I should have caught this mistake last night; but in the [itex]S_z[/itex] eigenbasis,

[tex]S_z=\frac{\hbar}{2}\left(|+\rangle\langle+| - |-\rangle\langle-|\right)\neq\frac{\hbar}{2}\left(|+\rangle - |-\rangle\right)[/tex]

The first expression is an operator (as it should be), while the second is just a linear combination/superposition of two eigenstates.

Similarly, in the [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex] eigenbasis, you have

[tex]\textbf{S}\cdot\mathbf{\hat{n}}=\frac{\hbar}{2}|\mathbf{\hat{n}},+\rangle\langle\mathbf{\hat{n}},+|-\frac{\hbar}{2}|\mathbf{\hat{n}},-\rangle\langle\mathbf{\hat{n}},-|[/tex]

The extra label [itex]\mathbf{\hat{n}}[/itex] inside the Bras and Kets is just there to make it clear that they are the eigenstates of [itex]\textbf{S}\cdot\mathbf{\hat{n}}[/itex], in its eigenbasis.
 
  • #16
I find out what is [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex]

I get the following:

[tex]\textbf{S}\cdot\hat{\textbf{n}}=\left(S_x\hat{\textbf{x}}+S_y\hat{\textbf{y}}+S_z\hat{\textbf{z}}\right)\cdot\left(\sin{\theta}cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}\right)=S_x\cos{\phi}+S_y\sin{\phi}[/tex]

[tex]S_x=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)[/tex]
[tex]S_y=\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)[/tex]

So

[tex]\textbf{S}\cdot\hat{\textbf{n}}=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}+\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)\sin{\phi}[/tex]
[tex]=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}-i\left(|+\rangle\langle -|-|-\rangle\langle +|\right)\sin{\phi}[/tex]


Since the system is in an eigenstate of [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex] with eigenvalue of [itex]\frac{\hbar}{2}[/itex] it has to satisfy this equation:

[tex]\textbf{S}\cdot\hat{\textbf{n}}|\textbf{S}\cdot\hat{\textbf{n}};+\rangle=\frac{\hbar}{2}|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/tex]

I understand everything up to here. I want to know why it has to satisfy that last equation. I know the definition of the eigenvalue. I want to know why [tex]|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/tex] is the eigenvector.

Or to put it another way, why isn't [tex]|\textbf{S}\cdot\hat{\textbf{n}};-\rangle[/tex] the eigenvector? Or why isn't [tex]|\textbf{S}\cdot\hat{\textbf{n}}\rangle[/tex] the eigenvector?
 
  • #17
Also, if we skip to the end of the problem, put another way, the probability of getting [itex]\frac{\hbar}{2}[/itex] when [tex]S_x[/tex] is measured is given by

[tex]|\langle S_x;+|\textbf{S}\cdot\hat{\textbf{n}};+\rangle|^2[/tex]

Why is it that instead of this:

[tex]|\langle S_x|\textbf{S}\cdot\hat{\textbf{n}}\rangle|^2[/tex]
?
 
  • #18
Bill Foster said:
I find out what is [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex]

I get the following:

[tex]\textbf{S}\cdot\hat{\textbf{n}}=\left(S_x\hat{\textbf{x}}+S_y\hat{\textbf{y}}+S_z\hat{\textbf{z}}\right)\cdot\left(\sin{\theta}cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}\right)=S_x\cos{\phi}+S_y\sin{\phi}[/tex]

[tex]S_x=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)[/tex]
[tex]S_y=\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)[/tex]

So

[tex]\textbf{S}\cdot\hat{\textbf{n}}=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}+\frac{i\hbar}{2}\left(|-\rangle\langle +|-|+\rangle\langle -|\right)\sin{\phi}[/tex]
[tex]=\frac{\hbar}{2}\left(|+\rangle\langle -| + |-\rangle\langle +|\right)\cos{\phi}-i\left(|+\rangle\langle -|-|-\rangle\langle +|\right)\sin{\phi}[/tex]

My copy of Sakurai has [itex]\mathbf{\hat{n}}[/itex] lying in the [itex]xz[/itex]-plane, making an angle [itex]\gamma[/itex] with the postive [itex]z[/itex]-axis

[tex]\implies\mathbf{\hat{n}}=\sin\gamma\mathbf{\hat{x}}+\cos\gamma\mathbf{\hat{z}}[/tex]


Since the system is in an eigenstate of [tex]\textbf{S}\cdot\hat{\textbf{n}}[/tex] with eigenvalue of [itex]\frac{\hbar}{2}[/itex] it has to satisfy this equation:

[tex]\textbf{S}\cdot\hat{\textbf{n}}|\textbf{S}\cdot\hat{\textbf{n}};+\rangle=\frac{\hbar}{2}|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/tex]

I understand everything up to here. I want to know why it has to satisfy that last equation. I know the definition of the eigenvalue. I want to know why [tex]|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/tex] is the eigenvector.

Or to put it another way, why isn't [tex]|\textbf{S}\cdot\hat{\textbf{n}};-\rangle[/tex] the eigenvector? Or why isn't [tex]|\textbf{S}\cdot\hat{\textbf{n}}\rangle[/tex] the eigenvector?

[itex]|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/itex] is defined as the eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex], with corresponding eigenvalue of [itex]\frac{\hbar}{2}[/itex] (In its eigenbasis!), and [itex]|\textbf{S}\cdot\hat{\textbf{n}};-\rangle[/itex] is defined as the eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex], with corresponding eigenvalue of [itex]-\frac{\hbar}{2}[/itex]

So, if the system is known to be in an eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] with corresponding eigenvalue [itex]\frac{\hbar}{2}[/itex], then it must be in the state [itex]|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/itex]. (If it were instead known to be in an eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] with corresponding eigenvalue [itex]-\frac{\hbar}{2}[/itex], then it would be in the state [itex]|\textbf{S}\cdot\hat{\textbf{n}};-\rangle[/itex])

Also, writing [itex]|\textbf{S}\cdot\hat{\textbf{n}}\rangle[/itex] makes absolutely no sense. As I said earlier, [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] is an operator, not a state; so writing it inside a Ket like this makes no sense.

Bill Foster said:
Also, if we skip to the end of the problem, put another way, the probability of getting [itex]\frac{\hbar}{2}[/itex] when [tex]S_x[/tex] is measured is given by

[tex]|\langle S_x;+|\textbf{S}\cdot\hat{\textbf{n}};+\rangle|^2[/tex]

Why is it that instead of this:

[tex]|\langle S_x|\textbf{S}\cdot\hat{\textbf{n}}\rangle|^2[/tex]
?

Well, the initial state of the system is [itex]|\psi_i\rangle=|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/itex]. If [itex]S_x[/itex] is measured, and the result is [itex]\frac{\hbar}{2}[/itex], what will the final state[itex]|\psi_f\rangle[/itex] of the system be? What is the probability of this outcome? (If you can't immediately answer these question, you need to re-read section 1.4 of Sakurai!)
 
  • #19
gabbagabbahey said:
[tex]\implies\mathbf{\hat{n}}=\sin\gamma\mathbf{\hat{x}}+\cos\gamma\mathbf{\hat{z}}[/tex]

While this is generally true, Problem 12 follows from Problem 9, so the angles above should be [tex]\gamma/2[/tex]
 
  • #20
jdwood983 said:
While this is generally true, Problem 12 follows from Problem 9, so the angles above should be [tex]\gamma/2[/tex]

Ermm... no, they should still just be [itex]\gamma[/itex]...you need only draw a picture to convince yourself of this.

The [itex]\gamma/2[/itex] present in the equation for the eigenstates [itex]|\textbf{S}\cdot\hat{\textbf{n}};\pm\rangle[/itex] results from a straightforward solving of the eigenvalue equation using [itex]\hat{\textbf{n}}=\sin\gamma\hat{\textbf{x}}+\cos\gamma\hat{\textbf{z}}[/itex].
 
  • #21
gabbagabbahey said:
Ermm... no, they should still just be [itex]\gamma[/itex]...you need only draw a picture to convince yourself of this.

The [itex]\gamma/2[/itex] present in the equation for the eigenstates [itex]|\textbf{S}\cdot\hat{\textbf{n}};\pm\rangle[/itex] results from a straightforward solving of the eigenvalue equation using [itex]\hat{\textbf{n}}=\sin\gamma\hat{\textbf{x}}+\cos\gamma\hat{\textbf{z}}[/itex].

Good point. I was thinking

[tex]
|\hat{\mathbf{n}};+\rangle=\cos\frac{\gamma}{2}|+\rangle+\sin\frac{\gamma}{2}|-\rangle
[/tex]
 
  • #22
gabbagabbahey said:
My copy of Sakurai has [itex]\mathbf{\hat{n}}[/itex] lying in the [itex]xz[/itex]-plane, making an angle [itex]\gamma[/itex] with the postive [itex]z[/itex]-axis

[tex]\implies\mathbf{\hat{n}}=\sin\gamma\mathbf{\hat{x}}+\cos\gamma\mathbf{\hat{z}}[/tex]

Wait a second...

Let [tex]\gamma=\theta[/tex] (the angle between the unit vector [tex]\hat{\textbf{n}}[/tex] and the z-axis), and let [tex]\phi[/tex] be the azimuthal angle.

Then in the general sense, the unit vector [tex]\hat{\textbf{n}}=\sin{\theta}\cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}[/tex]. If [tex]\hat{\textbf{n}}[/tex] lies in the xy plane, then it makes an angle with [tex]\hat{\textbf{z}}[/tex] of [tex]\theta=\frac{\pi}{2}[/tex]. So then

[tex]\hat{\textbf{n}}=\sin{\theta}\cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}=\sin{\frac{\pi}{2}}\cos{\phi}\hat{\textbf{x}}+\sin{\frac{\pi}{2}}\sin{\phi}\hat{\textbf{y}}+\cos{\frac{\pi}{2}}\hat{\textbf{z}}[/tex]
[tex]=\cos{\phi}\hat{\textbf{x}}+\sin{\phi}\hat{\textbf{y}}[/tex]

[itex]|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/itex] is defined as the eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex], with corresponding eigenvalue of [itex]\frac{\hbar}{2}[/itex] (In its eigenbasis!), and [itex]|\textbf{S}\cdot\hat{\textbf{n}};-\rangle[/itex] is defined as the eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex], with corresponding eigenvalue of [itex]-\frac{\hbar}{2}[/itex]

So, if the system is known to be in an eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] with corresponding eigenvalue [itex]\frac{\hbar}{2}[/itex], then it must be in the state [itex]|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/itex]. (If it were instead known to be in an eigenstate of [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] with corresponding eigenvalue [itex]-\frac{\hbar}{2}[/itex], then it would be in the state [itex]|\textbf{S}\cdot\hat{\textbf{n}};-\rangle[/itex])

Also, writing [itex]|\textbf{S}\cdot\hat{\textbf{n}}\rangle[/itex] makes absolutely no sense. As I said earlier, [itex]\textbf{S}\cdot\hat{\textbf{n}}[/itex] is an operator, not a state; so writing it inside a Ket like this makes no sense.



Well, the initial state of the system is [itex]|\psi_i\rangle=|\textbf{S}\cdot\hat{\textbf{n}};+\rangle[/itex]. If [itex]S_x[/itex] is measured, and the result is [itex]\frac{\hbar}{2}[/itex], what will the final state[itex]|\psi_f\rangle[/itex] of the system be? What is the probability of this outcome? (If you can't immediately answer these question, you need to re-read section 1.4 of Sakurai!)

OK, thanks.
 
  • #23
Bill Foster said:
Wait a second...

Let [tex]\gamma=\theta[/tex] (the angle between the unit vector [tex]\hat{\textbf{n}}[/tex] and the z-axis), and let [tex]\phi[/tex] be the azimuthal angle.

Then in the general sense, the unit vector [tex]\hat{\textbf{n}}=\sin{\theta}\cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}[/tex]. If [tex]\hat{\textbf{n}}[/tex] lies in the xy plane, then it makes an angle with [tex]\hat{\textbf{z}}[/tex] of [tex]\theta=\frac{\pi}{2}[/tex]. So then

[tex]\hat{\textbf{n}}=\sin{\theta}\cos{\phi}\hat{\textbf{x}}+\sin{\theta}\sin{\phi}\hat{\textbf{y}}+\cos{\theta}\hat{\textbf{z}}=\sin{\frac{\pi}{2}}\cos{\phi}\hat{\textbf{x}}+\sin{\frac{\pi}{2}}\sin{\phi}\hat{\textbf{y}}+\cos{\frac{\pi}{2}}\hat{\textbf{z}}[/tex]
[tex]=\cos{\phi}\hat{\textbf{x}}+\sin{\phi}\hat{\textbf{y}}[/tex]

Sure, but in this problem [itex]\hat{\textbf{n}}[/itex] lies in the [itex]xz[/itex]-plane, not the [itex]xy[/itex]-plane.
 
  • #24
gabbagabbahey said:
Sure, but in this problem [itex]\hat{\textbf{n}}[/itex] lies in the [itex]xz[/itex]-plane, not the [itex]xy[/itex]-plane.

Well I'll be darned...you're right. That means [tex]\phi=0[/tex] or [tex]\phi=\pi[/tex]
 
  • #25
I would assume that [itex]\gamma[/itex] is measured from the positive z-axis, counterclockwise towards the positive x-axis...making it slightly different than the definition of the polar angle, and resulting in the straightforward [itex]\mathbf{\hat{n}}=\sin\gamma\mathbf{\hat{x} }+\cos\gamma\mathbf{\hat{z}}[/itex].
 
  • #26
I've got this problem figured out.

However, in part b I'm confused.

I'm trying to calculate the following:

[tex]S_x^2=\frac{\hbar}{2}\left(|+\rangle\langle-|+|-\rangle\langle+|\right)\frac{\hbar}{2}\left(|+\rangle\langle-|+|-\rangle\langle+|\right)[/tex]
[tex]=\frac{\hbar^2}{4}\left(|-\rangle\langle-|+|+\rangle\langle+|\right)[/tex]
[tex]=\frac{\hbar^2}{4}\left(|+\rangle+|-\rangle\right)[/tex]

But it's supposed to be just [itex]\frac{\hbar^2}{4}[/itex]

What am I doing wrong that end up with a factor of [tex]|+\rangle+|-\rangle[/tex]?
 
  • #27
Bill Foster said:
[tex]S_x^2=\frac{\hbar}{2}\left(|+\rangle\langle-|+|-\rangle\langle+|\right)\frac{\hbar}{2}\left(|+\rangle\langle-|+|-\rangle\langle+|\right)[/tex]
[tex]=\frac{\hbar^2}{4}\left(|-\rangle\langle-|+|+\rangle\langle+|\right)[/tex]
[tex]=\frac{\hbar^2}{4}\left(|+\rangle+|-\rangle\right)[/tex]

How do you go from an operator [itex]S_x^2=\frac{\hbar^2}{4}\left(|-\rangle\langle-|+|+\rangle\langle+|\right)[/itex] to an expression for a state [itex]\frac{\hbar^2}{4}\left(|+\rangle+|-\rangle\right)[/itex]?!:confused:
 
  • #28
[tex]|-\rangle\langle-| = \left(\begin{array}{cc}0\\1\end{array}\right)\left(\begin{array}{cc}0&1\end{array}\right)=\left(\begin{array}{cc}0&0\\0&1\end{array}\right)[/tex]

[tex]|+\rangle\langle+| = \left(\begin{array}{cc}1\\0\end{array}\right)\left(\begin{array}{cc}1&0\end{array}\right)=\left(\begin{array}{cc}1&0\\0&0\end{array}\right)[/tex]

Therefore,

[tex]|-\rangle\langle-| + |+\rangle\langle+|=\left(\begin{array}{cc}0&0\\0&1\end{array}\right) + \left(\begin{array}{cc}1&0\\0&0\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)[/tex]

For some reason I was thinking that

[tex]\left(\begin{array}{cc}1&0\\0&1\end{array}\right)=|+\rangle + |-\rangle[/tex]

But

[tex]|+\rangle + |-\rangle=\left(\begin{array}{cc}1\\1\end{array}\right)[/tex]
 
  • #29
Bill Foster said:
Therefore,

[tex]|-\rangle\langle-| + |+\rangle\langle+|=\left(\begin{array}{cc}0&0\\0&1\end{array}\right) + \left(\begin{array}{cc}1&0\\0&0\end{array}\right) = \left(\begin{array}{cc}1&0\\0&1\end{array}\right)[/tex]

Right, which is the identity operator in the [itex]S_z[/itex] eigenbasis.
 

1. What is the Sakurai Problem 1.12?

The Sakurai Problem 1.12 is a mathematical problem posed by Japanese physicist and quantum theorist, Jun John Sakurai. It deals with the probability of getting a specific energy value when measuring a quantum system in a specific state.

2. What does the notation +h/2 mean in Sakurai Problem 1.12?

The notation +h/2 refers to the Planck's constant divided by 2. It is often used in quantum mechanics to represent the minimum change in energy that a quantum system can have.

3. Why is Sakurai Problem 1.12 important in quantum mechanics?

Sakurai Problem 1.12 is important in quantum mechanics because it demonstrates the quantization of energy in a system. It also highlights the probabilistic nature of quantum mechanics, where the outcome of a measurement cannot be predicted with certainty.

4. How is Sakurai Problem 1.12 solved?

Sakurai Problem 1.12 can be solved using mathematical techniques such as integration and solving differential equations. It also requires a thorough understanding of quantum mechanics principles and concepts.

5. What are the real-world applications of Sakurai Problem 1.12?

Sakurai Problem 1.12 has applications in various fields, including quantum computing, quantum communication, and quantum cryptography. It also helps in understanding the behavior of particles at the quantum level and can aid in the development of new technologies.

Similar threads

  • Advanced Physics Homework Help
Replies
10
Views
582
  • Advanced Physics Homework Help
Replies
1
Views
924
  • Advanced Physics Homework Help
Replies
9
Views
232
Replies
16
Views
555
  • Advanced Physics Homework Help
Replies
1
Views
764
  • Advanced Physics Homework Help
Replies
8
Views
1K
  • Advanced Physics Homework Help
Replies
0
Views
239
  • Advanced Physics Homework Help
Replies
9
Views
1K
Replies
4
Views
1K
Back
Top