Saltatory conduction allows action potentials (APs) to "hop" between nodes of Ranvier in myelinated axons, enhancing speed due to reduced charge leakage. The discussion raises questions about whether multiple APs can exist simultaneously at different nodes, as one AP can initiate before another ends, suggesting potential contradictions in existing theories. It is noted that while APs travel along the axon, they do not have identical time courses, leading to variations in their shape and timing at different locations. The cable theory, which describes the passive spread of electrical signals, is debated regarding its ability to account for the complexities of neuronal behavior, including the roles of ion channels and the effects of decay and delay on signal propagation. Overall, the conversation highlights ongoing inquiries into the mechanisms of neuronal signaling and the adequacy of theoretical models to explain observed phenomena.