Points in this post are my interpretation of: Ritchie, Physiology of Axons in "The Axon: Structure, Function and Pathophysiology" ed. Waxman, Kocsis and Stys, OUP 1995.
1. Myelinated axons conduct faster (v~d) than unmyelinated axons (v~sqrt(d)), where v is the speed across nodes and internodes. The key for this is the length constant, as I suspected from dimensional considerations in earlier posts. (Lussier and Rushton 1951).
2. There are references for the computation of velocity in axons, but I do not know whether this is across nodes and internodes, or whether they can also compute a separate internode velocity. (Blight 1985, Brill et al 1978, Dodge 1963, Fitzhugh 1962, Goldman and Albus 1968, Hardy 1973, Hutchinson et al 1970, Koles and Rasinsky 1972, Moore et al 1978, Ritchie and Stagg 1982, Schauf and Davis 1974, Waxman and Brill 1978, Wood and Waxman 1982)
3. There is criticism of the "classical" passive internode model and the neglect of a conduction pathway beneath the myelin, especially for mammalian myelinated axons. (Barrett and Barrett 1982, Blight 1985, Blight and Someya 1985, Bowe et al 1987). Quote for somasimple: "The internodal membrane not only has a capacitance two to three orders of magnitude greater than that of the node, but also contains a repertoire of ionic conductances...".
4. There is criticism of Rushton's analysis for small myelineated axons: "Rushton's belief that conduction velocity of PNS myelinated nerve fibers falls off markedly ... may be correct, but perhaps for a different reason from the one he proposed..."
5. "The studies of Moore et al (1978) show that internodal parameters control the conduction velocity far more than does the node itself. They help account for the insensitivity to the nodal constriction that is characteristic of myelinated fibers."
6. "[referring to activation rate constants] Why this should be so is unclear. Indeed it should be pointed out that the conduction velocity of a mammalian nerve fiber at 37oC can be simulated reasonably well only if these activation constants are brought into line with the squid giant axon value of 3 (Ritchie and Stagg 1982)."