MHB Samantha's question at Yahoo Answers involving related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
AI Thread Summary
The discussion revolves around a problem involving a security camera positioned 50 feet above a 100-foot hallway, focusing on the relationship between the camera's rotation and the movement of its scanning beam. The goal is to determine the necessary variable rate of rotation to maintain a constant scanning speed along the hallway. The mathematical derivation involves using trigonometric relationships and calculus to establish a formula for the angle of rotation in relation to the beam's position. Key findings indicate that the angle of rotation varies between -π/4 and π/4, with the rate of rotation expressed in terms of the beam's position. The discussion concludes with a confirmation of the mathematical reasoning behind the derived formulas.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

A security camera is centered 50 ft above a 100 foot hallway... Related Rates Question! HELP?

A security camera is centered 50 ft above a 100 foot hallway. It rotates back and forth to scan from one end of the hallway to the other. It is easiest to design the camera with a constant angular rate of rotation, but this results in a variable rate at which the images of the surveillance area are recorded. Therefore, it is desirable to design a system with a variable rate of rotation and a constant rate of movement of the scanning beam along the hallway. What rate of rotation is necessary to accomplish this? Verify you solution with some specific constant rates of movement.

Here is a link to the question:

A security camera is centered 50 ft above a 100 foot hallway... Related Rates Question! HELP? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Samantha,

I would solve this problem in more general terms, derive a formula, then plug the given data in.

Suppose we let the camera be $h$ units above the hallway, and the hallway extends $L_1$ units to the left of the camera and $L_2$ units to the right. Let the angle $\theta$ of the camera's angle of rotation be zero radians directly below the camera.

Please refer to the following diagram:

View attachment 4087

Hence the angle of rotation will be confined to the interval:

$\displaystyle -\tan^{-1}\left(\frac{L_1}{h} \right)\le\theta\le\tan^{-1}\left(\frac{L_2}{h} \right)$

We can see that for any positive value of $h$ and any finite values of $L_1$ and $L_2$, we must have:

$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$

Now, letting the position of the camera's beam on the floor of the hallway be $(x,0)$, we have the following relationship between this position and the angle of rotation:

$\displaystyle \tan(\theta)=\frac{x}{h}$

Differentiating with respect to time $t$, we find:

$\displaystyle \sec^2(\theta)\frac{d\theta}{dt}=\frac{1}{h}\frac{dx}{dt}$

We require $\displaystyle \left|\frac{dx}{dt} \right|=k$ where $0<k\in\mathbb{R}$. Hence:

$\displaystyle \frac{d\theta}{dt}=\frac{k}{h}\cos^2(\theta)=\frac{k}{h}\frac{h^2}{x^2+h^2}=\frac{kh}{x^2+h^2}$

Using the given data, we find the angle of rotation will vary from:

$\displaystyle -\frac{\pi}{4}\le\theta\le\frac{\pi}{4}$

where:

$\displaystyle \left|\frac{d\theta}{dt} \right|=\frac{50k}{x^2+50^2}$

and:

$\displaystyle -50\le x\le50$
 

Attachments

  • 2dacc3r.jpg
    2dacc3r.jpg
    4.4 KB · Views: 101
MarkFL said:
Hello Samantha,

I would solve this problem in more general terms, derive a formula, then plug the given data in.

Suppose we let the camera be $h$ units above the hallway, and the hallway extends $L_1$ units to the left of the camera and $L_2$ units to the right. Let the angle $\theta$ of the camera's angle of rotation be zero radians directly below the camera.

Please refer to the following diagram:
Hence the angle of rotation will be confined to the interval:

$\displaystyle -\tan^{-1}\left(\frac{L_1}{h} \right)\le\theta\le\tan^{-1}\left(\frac{L_2}{h} \right)$

We can see that for any positive value of $h$ and any finite values of $L_1$ and $L_2$, we must have:

$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$

Now, letting the position of the camera's beam on the floor of the hallway be $(x,0)$, we have the following relationship between this position and the angle of rotation:

$\displaystyle \tan(\theta)=\frac{x}{h}$

Differentiating with respect to time $t$, we find:

$\displaystyle \sec^2(\theta)\frac{d\theta}{dt}=\frac{1}{h}\frac{dx}{dt}$

We require $\displaystyle \left|\frac{dx}{dt} \right|=k$ where $0<k\in\mathbb{R}$. Hence:

$\displaystyle \frac{d\theta}{dt}=\frac{k}{h}\cos^2(\theta)=\frac{k}{h}\frac{h^2}{x^2+h^2}=\frac{kh}{x^2+h^2}$

Using the given data, we find the angle of rotation will vary from:

$\displaystyle -\frac{\pi}{4}\le\theta\le\frac{\pi}{4}$

where:

$\displaystyle \left|\frac{d\theta}{dt} \right|=\frac{50k}{x^2+50^2}$

and:

$\displaystyle -50\le x\le50$

Mark,How did you arrive at
$\displaystyle \frac{k}{h}\frac{h^2}{x^2+h^2}$
From $\displaystyle \frac{k}{h}\cos^2(\theta)$
 
MSW said:
Mark,

How did you arrive at
$\displaystyle \frac{k}{h}\frac{h^2}{x^2+h^2}$
From $\displaystyle \frac{k}{h}\cos^2(\theta)$

If we have defined:

$$\tan(\theta)=\frac{x}{h}$$

This means in the right triangle the side opposite from $\theta$ is x and the side adjacent is $x$. By Pythagoras, the hypotenuse must then be $$\sqrt{x^2+h^2}.$$

As cosine is defined to be the ratio of adjacent to hypotenuse, we then find:

$$\cos(\theta)=\frac{\text{adjacent}}{\text{hypotenuse}}=\frac{h}{\sqrt{x^2+h^2}}$$

Hence:

$$\cos^2(\theta)=\frac{h^2}{x^2+h^2}$$

Does this make sense?
 
MarkFL said:
If we have defined:

$$\tan(\theta)=\frac{x}{h}$$

This means in the right triangle the side opposite from $\theta$ is x and the side adjacent is $x$. By Pythagoras, the hypotenuse must then be $$\sqrt{x^2+h^2}.$$

As cosine is defined to be the ratio of adjacent to hypotenuse, we then find:

$$\cos(\theta)=\frac{\text{adjacent}}{\text{hypotenuse}}=\frac{h}{\sqrt{x^2+h^2}}$$

Hence:

$$\cos^2(\theta)=\frac{h^2}{x^2+h^2}$$

Does this make sense?

Perfect sense! Thank you!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top