Schur product for complex numbers.

rkrsnan
Messages
53
Reaction score
0
For matrices, Schur product or Hadamard product is defined as the entry wise product.
I want to know if they have a similar type of multiplication for complex numbers.
That is (a+ i b) o (c + i d) = (a c + i b d)
I encounter a situation where such a definition is useful.

In physics I get an expression that looks like the following

(Cos[x1] , Cos[x2] ).A.Transpose[(Cos[y1] , Cos[y2] )] +
i (Sin[x1] , Sin[x2] ).B.Transpose[(Sin[y1] , Sin[y2] )]
where A and B are 2x2 real matrices.

I can express the above expression in the following simpler form, if the complex product "o" as I defined earlier already exists in literature.

(exp[i x1], exp[i x2]) o (A+iB) o Transpose[(exp[i y1], exp[i y2])]

Thanks very much for the help.
 
Physics news on Phys.org
You can define whatever you want, as long as it is well defined, but this isn't an issue here. The question is which properties your multiplication should have. E.g. you get something here which has little in common with complex multiplication, so the two will have to be strictly separated. All rules will have to be proven in advance though.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top