Second Derivative of Square Root Equation

  • Thread starter Thread starter Sakha
  • Start date Start date
  • Tags Tags
    Derivative Proof
Sakha
Messages
297
Reaction score
0

Homework Statement


\sqrt{x}+\sqrt{y}= 4 prove that y''=\frac{2}{x\sqrt{x}}



The Attempt at a Solution


\frac{dy}{dx}=-\frac{\sqrt{y}}{\sqrt{x}}

I tried solving for the second derivative and got

\frac{d^2y}{dx^2}=-\frac{-x\frac{dy}{dx}-y}{2\sqrt{\frac{y}{x}}x^2}
[
Which is wrong if I plug in values.
Anyone sees my error?
 
Physics news on Phys.org
Sakha said:

Homework Statement


\sqrt{x}+\sqrt{y}= 4 prove that y''=\frac{2}{x\sqrt{x}}

The Attempt at a Solution


\frac{dy}{dx}=-\frac{\sqrt{y}}{\sqrt{x}}

I tried solving for the second derivative and got

\frac{d^2y}{dx^2}=-\frac{-x\frac{dy}{dx}-y}{2\sqrt{\frac{y}{x}}x^2}
[
Which is wrong if I plug in values.
Anyone sees my error?

Your first derivative looks ok to me, but I am not too sure where your second derivative came from. Did you use the quotient rule?

<br /> \frac{d}{{dx}}(\frac{u}{v}) = \frac{{u&#039;v - v&#039;u}}{{v^2 }}<br />
 
How did you get \frac{dy}{dx} = -\frac{\sqrt{y}}{\sqrt{x}}?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top