- #1
- 798
- 1
Homework Statement
[tex]
\begin{pmatrix}
-2 & 0 & 0\\
0 & -2 & 0\\
0 & 0 & -2
\end{pmatrix}
[/tex]
If I evaluate with eigenvalues, I get:
[tex]
det\begin{pmatrix}
-2-\lambda & 0 & 0\\
0 & -2-\lambda & 0\\
0 & 0 & -2-\lambda
\end{pmatrix}=0
[/tex]
[tex](-2-\lambda{)}((-2-\lambda{)}(-2-\lambda{)})=0[/tex]
and thus
[tex]\lambda{=}-2[/tex]
So there exists a local maximum according to this. However, when I evaluate with a different method offered in my textbook, I get a different result, which is confusing me as this method has always worked before.
[tex]det(-2)=-2<0, det\begin{pmatrix}
-2 & 0\\
0 & -2
\end{pmatrix}=4>0, det\begin{pmatrix}
-2 & 0 & 0\\
0 & -2 & 0\\
0 & 0 & -2
\end{pmatrix}=-8<0[/tex]
By this method it is a saddle point. Not entirely sure what is going on here.