Seesaw mass matrix and neutrino masses

rruben
Messages
4
Reaction score
0
Hi

Since a few days I've been confused about the seesaw mass matrix explaining neutrino masses. It is the following matrix:
\begin{pmatrix} 0 & m\\ m & M \\ \end{pmatrix}.

As can easily be checked it has two eigenvalues which are given by M and -m^2/M in the limit M>>m (the limit doesn't really matter one is always negative when M and m are positive). It seems really weird to me that you would have a negative mass.

As a lot of papers on the subject (Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Phys. Lett. B98 (1981) 265 and others) will tell you the "mass eigenstates" have masses M and m^2/M without the minus sign. This makes me feel like I'm missing something that makes the sign irrelevant. Could anyone help me with this?

Thanks in advance!
 
Physics news on Phys.org
The sign is not irrelevant, it is related to the Majorana phase of the eigenstate. The mass of the particle is the absolute value of the eigenvalue.

Edit: You will notice that also the Dirac mass matrix
$$
\begin{pmatrix}
0 & m \\
m & 0
\end{pmatrix}
$$
has one positive and one negative eigenvalue.
 
  • Like
Likes rruben
Thanks for your reply. I will look into it a bit more.
 
I seem to notice a buildup of papers like this: Detecting single gravitons with quantum sensing. (OK, old one.) Toward graviton detection via photon-graviton quantum state conversion Is this akin to “we’re soon gonna put string theory to the test”, or are these legit? Mind, I’m not expecting anyone to read the papers and explain them to me, but if one of you educated people already have an opinion I’d like to hear it. If not please ignore me. EDIT: I strongly suspect it’s bunk but...
I'm trying to understand the relationship between the Higgs mechanism and the concept of inertia. The Higgs field gives fundamental particles their rest mass, but it doesn't seem to directly explain why a massive object resists acceleration (inertia). My question is: How does the Standard Model account for inertia? Is it simply taken as a given property of mass, or is there a deeper connection to the vacuum structure? Furthermore, how does the Higgs mechanism relate to broader concepts like...
Back
Top