MHB Segments in a Circle: How Many Parts Can Form & What Will It Look Like?

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Circle Form parts
Monoxdifly
MHB
Messages
288
Reaction score
0
If a circle has 6 segments, how many maximum parts which can be formed? I know that 1 segment makes 2 parts, 2 segments make 4 parts, and 3 segments makes 7 parts. Judging by the pattern, is the answer 22? What will the exact picture of the circle be? Thank you very much.
 
Mathematics news on Phys.org
Monoxdifly said:
If a circle has 6 segments, how many maximum parts which can be formed? I know that 1 segment makes 2 parts, 2 segments make 4 parts, and 3 segments makes 7 parts. Judging by the pattern, is the answer 22? What will the exact picture of the circle be? Thank you very much.

Looks like this sequence ...

$ 2, 4, 7, 11, 16, 22, ... , \dfrac{n^2+n+2}{2}, ...$
 
Last edited by a moderator:
The maximum number of pizza pieces formula is:

$$\frac{c(c+1)}{2} +1$$

where c is the number of cuts

You'll also notice that;

the maximum number of pieces formula -1 for every number = the triangle numbers

So that's why we add a +1 at the end of the formula

Substituting c for 6 gives us:

$$\frac{42}{2}+1= 21+1=22$$

So yes, you were correct

P.S. Just so you know, you need to cross all the lines with a line to make the largest number of pieces possible, however don't cross a line intersection
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top