Selection Rule: delta_I = 1/2 in the strangeness-changing weak currents

  • Thread starter Thread starter zq460
  • Start date Start date
  • Tags Tags
    Currents Weak
zq460
Messages
4
Reaction score
0
I read in a paper http://nngroup.physics.sunysb.edu/~nngroup/misc/Documents/NeutrinoReactionsAtAcceleratorEnergies.pdf that delta_I = 1/2 rule of the strangeness-changing weak current implies the ratio of cross section of proton->Ʃ0 process to neutron->Ʃ- process to be 1/2. The delta_I = 1/2 rule is mentioned just before equation (3.40) on page 317.

I do not understand what is this selection rule, and how does it effect the cross section ratio of the 2 processes? Is delta_I = 1/2 rule is that the change in the isospin of initial and final particle which has to be 1/2 for these processes?

These are the cabbibo suppressed 'charged current processes', where when a neutrino interacts with a nucleon, converts to a lepton producing a W-, which converts a u-quark in the nucleon to a s-quark. So this is a strangness changing process (delta_S = 1) where a 'proton converts to a Ʃ0' or a 'neutron converts to a Ʃ-', both processes are written in equation (3.39) and their cross section ratio is written to be 1/2 accodording to delta_I = 1/2 rule in equation (3.40) which I want to understand.

Thanks much for the help!
 
Physics news on Phys.org
Ok, what he is calling a ΔI = 1/2 rule is not really a "rule", but an empirical observation. You're comparing the cross-sections for two semi-leptonic interactions. Rewrite them as

1) μ+ν → ∑0p
2) μ+ν → ∑+n

The right-hand sides couple an isospin 1 particle (∑) with an isospin 1/2 particle (p or n). In general these can form an I = 1/2 state or an I = 3/2 state. Copying the Clebsch-Gordan coefficients from Wikipedia,

1) (for ∑0p) |1, 0> ⊗ |1/2, 1/2> = (√2/3) |3/2, 1/2> ⊕ (-√1/3)|1/2, 1/2>
2) (for ∑+n) |1, 1> ⊗ |1/2, -1/2> = (√1/3) |3/2, 1/2> ⊕ (√2/3)|1/2, 1/2>

The ΔI = 1/2 rule says the reaction produces only I = 1/2. Comparing the coefficients, (-√1/3) for ∑0p and (√2/3) for ∑+n, we find the amplitude for the second reaction is greater by a factor of √2. Therefore the cross-section will be greater by the square of this, namely 2.
 
Great! I understand now the equations you wrote and such a neat proof of cross section ratio to be 2. However, why did u rewrite the reactions as

1) μ+ν → ∑0p
2) μ+ν → ∑+n

What is the logic behind rewriting the processes as above instead of

1') vp → μ+0
2') vn → μ+-

This actually changes the Clebsch-Gordan coefficients, as then for (2') I will have

(for ∑-n) |1, -1> ⊗ |1/2, -1/2> = (1) |3/2, -3/2>
and all other terms will be zero obeying m1+m2 = m rule.

I am sorry I might be missing some very basic and abvious point here. Thanks for the help again.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top