Self consistent spin wave theory

Petar Mali
Messages
283
Reaction score
0
\hat{H}=\hat{H}_0+S\sum_{i,j}I_{i,j}(\hat{a}_i\hat{b}_j+\hat{a}_i^+\hat{b}_j^++\hat{b}<br /> ^+_j\hat{b}_j+\hat{a}<br /> ^+_i\hat{a}_i)-\sum_{i,j}I_{i,j}[\frac{1}{2}(\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j\hat{b}_j+\hat{a}^+_i\hat{a}^+_i\hat{a}_i\hat{b}<br /> ^+_j)+\hat{a}<br /> ^+_i\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j]

\hat{a}_i,\hat{a}_i^+,\hat{b}_j,\hat{b}_j^+ - bose operators

SCSW - theory

\hat{H}=\hat{H}_0+\hat{H}_2+\hat{H}_4^{SC}

\hat{H}_2=S\sum_{i,j}I_{i,j}(\hat{a}_i\hat{b}_j+\hat{a}_i^+\hat{b}_j^++\hat{b}<br /> ^+_j\hat{b}_j+\hat{a}<br /> ^+_i\hat{a}_i)

How is \hat{H}^{SC}_{4} defined?

Term-\sum_{i,j}I_{i,j}[\frac{1}{2}(\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j\hat{b}_j+\hat{a}^+_i\hat{a}^+_i\hat{a}_i\hat{b}<br /> ^+_j)+\hat{a}<br /> ^+_i\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j] represent magnon - magnon interractions.
 
Last edited:
Physics news on Phys.org
In textbook which I had

\hat{H}_4^{SC}=-\sum_{i,j}I_{i,j}[\hat{a}^+_i\hat{a}_i(\langle<br /> \hat{b}^+_j\hat{b}_j\rangle+\langle\hat{b}^+_j\hat{a}^+_i\rangle)+\hat{b}^+_j\hat{b}_j(\langle\hat{a}^+_i\hat{a}_i\rangle+<br /> \langle\hat{b}_j\hat{a}_i\rangle)+\hat{a}_i\hat{b}_j(\langle\hat{a}_i^+\hat{b}_j^+\rangle+\langle\hat{b}_j^+\hat{b}_j\rangle)<br /> +\frac{1}{2}\hat{a}_i^+\hat{a}_i^+\langle\hat{b}_j^+\hat{a}_i\rangle+\frac{1}{2}\hat{a}_i^+\hat{a}_i^+\langle \hat{b}_j^+\hat{a}_i<br /> \rangle+\frac{1}{2}\hat{b}_j^+\hat{a}_i(\langle \hat{b}_j\hat{b}_j\rangle+\frac{1}{2}\langle\hat{a}_i^+\hat{a}_i\rangle)]

Can you explain me this?
 
Any help?

For example

\hat{a}_i^+\hat{a}_i\hat{b}_j^+\hat{b}_j=\hat{a}_i^+\hat{a}_i\langle \hat{b}_j^+\hat{b}_j \rangle+\hat{b}_j^+\hat{b}_j\langle \hat{a}_i^+\hat{a}_i \rangle+\hat{a}_i\hat{b}^+_j\langle \hat{a}_i^+\hat{b}_j \rangle+\hat{a}_i^+\hat{b}_j \langle\hat{a}_i\hat{b}_j^+\rangle+\hat{a}_i^+\hat{b}_j^+\langle \hat{a}_i\hat{b}_j\rangle+\hat{a}_i\hat{b}_j\langle \hat{a}_i^+\hat{b}_j^+ \rangle

Correct? Can you explain me this? Thanks!
 
This is more like a Bogoliubov's method.
 
I think that is neither of that!
 
This is some kind of approximation.

Maybe approximation of identity

\hat{A}\hat{B}=\hat{A}\langle \hat{B} \rangle+\langle\hat{A}\rangle \hat{B}-\langle\hat{A}\hat{B}\rangle+(\hat{A}-\langle \hat{A}\rangle)(\hat{B}-\langle \hat{B}\rangle)

?

\hat{A}\hat{B}=\hat{A}\langle \hat{B} \rangle+\langle\hat{A}\rangle \hat{B}-\langle\hat{A}\hat{B}\rangle+(\hat{A}-\langle \hat{A}\rangle)(\hat{B}-\langle \hat{B}\rangle)

\hat{C}\hat{D}=\hat{C}\langle \hat{D} \rangle+\langle\hat{C}\rangle \hat{D}-\langle\hat{C}\hat{D}\rangle+(\hat{C}-\langle \hat{C}\rangle)(\hat{D}-\langle \hat{D}\rangle)

So

\hat{A}\hat{B}\hat{C}\hat{D}=?

Anybody knows?
 
Last edited:
Any idea?
 
This is a method of mean field theory.

It is used for the weak coupled superconductor.

if there is only <a+a>, that is Hartree-Fock approximation.
If there contains <a+a+> or <aa>, that is mean field theory.
 
  • #10
I made a mistake in Hamiltonian

It looks like

\hat{H}_4^{SC}=-\sum_{i,j}I_{i,j}\{\hat{a}^+_i\hat{a}_i(\langle \hat{b}^+_j\hat{b}_j\rangle+\langle<br /> \hat{a}^+_i\hat{b}^+_j\rangle)+\hat{b}^+_j\hat{b}_j(\langle<br /> \hat{a}^+_i\hat{a}_i\rangle+\langle\hat{a}_i\hat{b}_j\rangle)+\hat{a}_i\hat{b}_j(\langle<br /> \hat{a}^+_i\hat{b}^+_j\rangle+\langle\hat{b}^+_j\hat{b}_j\rangle)+\frac{1}{2}\hat{a}^+_i\hat{a}^+_i\langle\hat{a}_i\hat{b}<br /> ^+_j\rangle+\frac{1}{2}\hat{b}_j\hat{b}_j\langle\hat{a}_i\hat{b}<br /> ^+_j\rangle+\frac{1}{2}\hat{a}_i\hat{b}^+_j(\langle\hat{a}^+_i\hat{a}^+_i\rangle+\langle\hat{b}_j\hat{b}_j\rangle)\}
 
Back
Top