Petar Mali
- 283
- 0
\hat{H}=\hat{H}_0+S\sum_{i,j}I_{i,j}(\hat{a}_i\hat{b}_j+\hat{a}_i^+\hat{b}_j^++\hat{b}<br />
^+_j\hat{b}_j+\hat{a}<br />
^+_i\hat{a}_i)-\sum_{i,j}I_{i,j}[\frac{1}{2}(\hat{a}_i\hat{b}<br />
^+_j\hat{b}_j\hat{b}_j+\hat{a}^+_i\hat{a}^+_i\hat{a}_i\hat{b}<br />
^+_j)+\hat{a}<br />
^+_i\hat{a}_i\hat{b}<br />
^+_j\hat{b}_j]
\hat{a}_i,\hat{a}_i^+,\hat{b}_j,\hat{b}_j^+ - bose operators
SCSW - theory
\hat{H}=\hat{H}_0+\hat{H}_2+\hat{H}_4^{SC}
\hat{H}_2=S\sum_{i,j}I_{i,j}(\hat{a}_i\hat{b}_j+\hat{a}_i^+\hat{b}_j^++\hat{b}<br /> ^+_j\hat{b}_j+\hat{a}<br /> ^+_i\hat{a}_i)
How is \hat{H}^{SC}_{4} defined?
Term-\sum_{i,j}I_{i,j}[\frac{1}{2}(\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j\hat{b}_j+\hat{a}^+_i\hat{a}^+_i\hat{a}_i\hat{b}<br /> ^+_j)+\hat{a}<br /> ^+_i\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j] represent magnon - magnon interractions.
\hat{a}_i,\hat{a}_i^+,\hat{b}_j,\hat{b}_j^+ - bose operators
SCSW - theory
\hat{H}=\hat{H}_0+\hat{H}_2+\hat{H}_4^{SC}
\hat{H}_2=S\sum_{i,j}I_{i,j}(\hat{a}_i\hat{b}_j+\hat{a}_i^+\hat{b}_j^++\hat{b}<br /> ^+_j\hat{b}_j+\hat{a}<br /> ^+_i\hat{a}_i)
How is \hat{H}^{SC}_{4} defined?
Term-\sum_{i,j}I_{i,j}[\frac{1}{2}(\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j\hat{b}_j+\hat{a}^+_i\hat{a}^+_i\hat{a}_i\hat{b}<br /> ^+_j)+\hat{a}<br /> ^+_i\hat{a}_i\hat{b}<br /> ^+_j\hat{b}_j] represent magnon - magnon interractions.
Last edited: