- #1
sayebms
- 33
- 0
Homework Statement
A potential satisfies ##\nabla^2 Φ = 0## in the 2d slab ## -\inf < x < \inf ##, ##-b < y < b ##, with boundary conditions ## Φ(x, +b) = +V_s(x)## on the top and ##Φ(x, b) = -V_s(x)## on the bottom, where[/B]
##V_s (x)= -V_0 for -a<x<0##
##V_s (x)=+V_0 for 0<x<a##
(a) what is ##\Phi(x,y)## in the interior?
Homework Equations
##\nabla^2 \phi=0##
##\nabla^2 = \frac{\partial ^2}{\partial x^2} + \frac{\partial ^2}{\partial y^2} ##[/B]
The Attempt at a Solution
##\Phi = X(x)Y(y)##[/B]
then using separation of variables we arrive at the following:
##\frac{1}{X}\frac{\partial^2 X}{\partial x^2 } + \frac{1}{Y}\frac{\partial^2 Y}{\partial y^2 }=0##
##\frac{1}{Y}\frac{\partial^2 Y}{\partial y^2 }=-\alpha^2## which gives us ##Y(y)= Asin \alpha y +Bcos \alpha y ##
##\frac{1}{X}\frac{\partial^2 X}{\partial x^2 }=\alpha ^2## and solution of its is ##X(x)=Ce^{\alpha x}+De^{-\alpha x}##
applying the periodic boundary conditions to the Y solution will give us :
##Y(b)=V_s =A sin \alpha b +B cos \alpha b ##
##Y(-b)=-V_s =-A sin \alpha b +B cos \alpha b ##
so summing these up will give B=0
my question is have I gotten it right till here and how I go about finding the ##\alpha## and the boundary conditions for ##X(x)##? I appreciate any ideas or hints.
Last edited: