Sequence of definite positive matrices

jem05
Messages
54
Reaction score
0
hello,
if i have a sequence of definite positive matrices that converges, is it always that the limit matrix is always a definite positive matrix?
if it's true, can someone please tell me why or link me to some proof?
thank you.
 
Physics news on Phys.org
Hi jem05,

in general I would say no. For instance let I be the identity matrix, which is positive definite, and let n be a natural number. The matrix I/n is positive definite, because for any vector x we have:

x' (I/n) x = 1/n |x|^2

which is positive if x is not null; however the limit of the sequence {I/n} is the null matrix, which is not positive definite, but it is at least positive semidefinite. And I feel like this is true in general, because if A[n] is a sequence of positive definite matrices that converges to A, then x'(A[n])x is a sequence of positive numbers if x is not null, and it cannot converge to a negative number. So we can write, since the limit of the product is the product of the limits:

0 =< lim x'(A[n])x = x'(lim A[n])x = x'Ax

Hence A is positive semidefinite.

What do you think? Bye, hopefully that was helpful.

Dario
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top