nameVoid
- 238
- 0
\sum_{n=1}^{\infty}\frac{(-10)^n}{n!}
im seeing the terms increasing here DIVERGENT
\sum_{n=1}^{\infty}\frac{10^n}{n!}
\lim_{n->\infty}\sqrt[n]{\frac{10^n}{n!}}>1
text is showing absolute convergence
\sum_{n=1}^{\infty}(-1)^n\frac{n^2+3}{(2n-5)^2}
\lim_{n->\infty}\frac{n^2+3}{(2n-5)^2}\neq0
divergent
\frac{n^2+3}{(2n-5)^2}\leq1
\sum_{n=1}^{\infty}1 -> \infty
\lim_{n->\infty}{\frac{n^2+3}{(2n-5)^2}>0
divergent by limit comparison test
im seeing the terms increasing here DIVERGENT
\sum_{n=1}^{\infty}\frac{10^n}{n!}
\lim_{n->\infty}\sqrt[n]{\frac{10^n}{n!}}>1
text is showing absolute convergence
\sum_{n=1}^{\infty}(-1)^n\frac{n^2+3}{(2n-5)^2}
\lim_{n->\infty}\frac{n^2+3}{(2n-5)^2}\neq0
divergent
\frac{n^2+3}{(2n-5)^2}\leq1
\sum_{n=1}^{\infty}1 -> \infty
\lim_{n->\infty}{\frac{n^2+3}{(2n-5)^2}>0
divergent by limit comparison test