Series + Integral: Investigate Convergence

  • Thread starter Thread starter asi123
  • Start date Start date
  • Tags Tags
    Integral Series
asi123
Messages
254
Reaction score
0

Homework Statement



Hello.

I need to to investigate (I hope I said that right :blushing:) the converge of this function, any idea guys?

Homework Equations





The Attempt at a Solution

 

Attachments

  • 1.jpg
    1.jpg
    5.9 KB · Views: 393
Physics news on Phys.org
I would recommend using the "ratio test". That will lead to an integral from 1/(n+1) to 1/n and you need to show that the limit of that integral, as n goes to infinity, is less than 1.
 
\lim_{n\to \infty} \frac{ \int^{1/{n+1}}_0 \frac{x^{1/4}}{1+x^2} dx}{ \int^{1/{n}}_0 \frac{x^{1/4}}{1+x^2} dx}.

I'm not sure how that gives an integral from 1/(n+1) to 1/n =S

EDIT: Dont know what's wrong with the latex.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top