Series Representation for sin(x)/(cos(x)+cosh(x)) Valid for 0<x?

rman144
Messages
34
Reaction score
0
Does anyone know of a series representation for:

\frac{sin(x)}{cos(x)+cosh(x)}

Preferably valid for 0<x, but any ideas or assistance on any domain would be much appreciated.
 
Physics news on Phys.org
Do a taylor series, for sin(x), cos(x), cosh(x), 1/x, then compose them and use the multinational theorm.
 
\sin(x)=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}
\cos(x)=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n}}{(2n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...
\cosh(x)=\sum_{n=0}^{\infty}\frac{x^{2n}}{(2n)!}1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+...

You could cancel some of the terms on denominator to get 1+\frac{x^{4}}{4!}+\frac{x^{8}}{8!}+...=\sum_{n=0}^{\infty}\frac{x^{4n}}{(4n)!} and then do long division.

Wolfram Alpha gives
\frac{x}{2}-\frac{x^{3}}{12}+\frac{x^{5}}{60}-\frac{17x^{7}}{5040}+\frac{31x^{9}}{45360}-\frac{691x^{11}}{4989600}+...
 
Last edited:
And Maple disagrees in some signs...
{\frac {\sin \left( x \right) }{\cos \left( x \right) +\cosh \left( x<br /> \right) }} = {\frac {1}{2}}x-{\frac {1}{12}}{x}^{3}-{\frac {1}{60}}{x}^{5}+{\frac <br /> {17}{5040}}{x}^{7}+{\frac {31}{45360}}{x}^{9}-{\frac {691}{4989600}}{x<br /> }^{11}+O \left( {x}^{12} \right) <br />
 

Similar threads

Replies
8
Views
250
Replies
1
Views
1K
Replies
3
Views
2K
Replies
3
Views
3K
Replies
1
Views
2K
Replies
29
Views
4K
Back
Top