Series with Trigonometric funtions

azatkgz
Messages
182
Reaction score
0
[SOLVED] Series with Trigonometric funtions

Homework Statement


Determine whether the series converges conditionally,converges absolutely or diverges.

\sum_{n=2}^{\infty}\frac{\sin (n+\frac{1}{n})}{\ln (\ln n)}






The Attempt at a Solution



\frac{\sin (n+\frac{1}{n})}{\ln (\ln n)}=\frac{\sin n\cos \frac{1}{n}+\sin \frac{1}{n}\cos n}{\ln (\ln n)}=\frac{\sin n(1+O(\frac{1}{n^2}))+\cos n(\frac{1}{n}+O(\frac{1}{n^3}))}{\ln (\ln n)}

\sum_{n=2}^{\infty}\sin n,\sum_{n=2}^{\infty}\cos n are bounded

From Dirichlet's Test we can deduce that this series converges

|a_n|=\left|\frac{\sin n(1+O(\frac{1}{n^2})}{\ln (\ln n)}\right|+\left|\frac{cos n(\frac{1}{n}+O(\frac{1}{n^3}))}{\ln (\ln n)}\right|

if we look for example at \left|\sum_{n=2}^{\infty}\frac{cos n}{n\ln (\ln n)}\right|>\left|\sum_{n=2}^{\infty}\frac{cos n}{n\ln (n)}\right|

0<|cosn|<1 and \sum_{n=2}^{\infty}\frac{1}{n\ln (n)} diverges by Integral Test
So this series converges conditionally!
 
Physics news on Phys.org
Completely correct, nothing I can really add of value. You seem to be getting most of these right =]
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top