- #1
- 2
- 0
Question:
How do I prove the set of non-invertible matrices is unbounded?
Attempt:
Let A be an element of set of non-invertible matrices.
det(A)=0
det(A)=0 is just the line y=0 if you have det(A) as the y-axis and the set of non-invertible matrices on the x-axis. y=0 is unbounded, so the set of non invertible matrices is unbounded?
How do I prove the set of non-invertible matrices is unbounded?
Attempt:
Let A be an element of set of non-invertible matrices.
det(A)=0
det(A)=0 is just the line y=0 if you have det(A) as the y-axis and the set of non-invertible matrices on the x-axis. y=0 is unbounded, so the set of non invertible matrices is unbounded?