Can Injective Functions Imply Surjective Ones Without the Axiom of Choice?

  • Thread starter Thread starter jacobrhcp
  • Start date Start date
  • Tags Tags
    Set
jacobrhcp
Messages
164
Reaction score
0

Homework Statement



if A is not empty and s:A->B is injective, then there is a surjective function f:B->A such that f(s(a))=a for all a in A. Do not use the Axiom of Choice

The Attempt at a Solution



for all b', b'' in B s(b')=s(b'') means b'=b''. So s^-1 (c) is unique in A. Because any point in A is sent to at most one point in B, we can just let f send every point in B of the form s(c) to c.

now we only need to send all the other points somewhere. Here I need to 'pick' some point once again. Why do I not need the AC here?
 
Physics news on Phys.org
jacobrhcp said:
now we only need to send all the other points somewhere. Here I need to 'pick' some point once again. Why do I not need the AC here?

Hi jacobrhcp! :smile:

Because the axiom of choice is only for choosing the whole set … here, you only need to choose one element. :wink:

For revision, see http://en.wikipedia.org/wiki/Axiom_of_choice
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top