Definition 1.) Cardinality. Loosely speaking, it refers to the "size" of a set. This is to say, cardinality is the number of objects (often technically labeled "elements") contained in a set. So if a set, X, is {a,b,c,d}, then the cardinality of X is 4, because it has four objects contained in it; likewise, the cardinality of our alphabet is 24, because we have 24 distinct letters in our language.
Theorem 2.) Two sets of objects (let's call them A and B) are said to have the same cardinality, if and only if, they have "1-to-1 correspondence." This is to say, if every object in A can be attached to a unique object in B, and vice-versa. An intuitive example would be: "Every knight has a horse, and every horse has a knight." Let the first set, A, represent some set of horses and let the second set, B, be represented by a set of knights. Even if we haven't counted the set of horses or the set of knights, we can know that they have an equal number of horses and knights if we can't mount every knight to a horse and have no horses or knights left over.
Definition 3.) The cardinality of a set is said to be (uncountably) infinite, if you can find a "1-to-1 correspondence" between every point in the set and an interval of the real line (I'm being slightly incorrect here, but it wouldn't be beneficial to go into why).
This is to say, the cardinality of [2,3] (the set of numbers greater than 2 but less than 3) is infinite (So, for an intuitive proof: I can find you some other numbers that are only slightly larger than 2, mainly: 2.1, 2.01, 2.001, ad infinitum that fits between 2 and 3, and since there are an infinite number of those, there must be, as a collection of them, an infinite cardinality).Proposition 4.) I can uniquely identify every point on the circumference of a circle with an angle (ranging between 0 and 360 degrees, if you like; or 0 and 2 pi, if you know about radians), and visa versa. This should be intuitively true, because the angle, going out from the center, points to a unique point on the circumference of the circle. The angle, however, is an interval of real numbers [0,360).
Conclusion.) Taking our previous theorem, our definition of what cardinality means, and our definition of what it means to have an (uncountably) infinite cardinality, it follows logically that since I can pair every point uniquely to an angle, and the set of all angles is (uncountably) infinite --that therefore, the number of points on a circumference is infinite.
(This is a more intuitive discussion, I think, of the principles that you're asking about)